Skip to main content
Log in

Effect of Grain Refinement on the Mechanical Properties of a Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Grain coarsening due to the high temperature exposure deteriorates mechanical properties of the high nitrogen austenitic stainless steels (HNASSs) produced by solution nitriding. To improve mechanical properties, the grains of nickel and manganese-free Fe-23Cr-2.4Mo-1.2N HNASS plates fabricated by pressurized solution nitriding were refined using a two-stage heat treatment process. Structural and mechanical properties were investigated using X-ray diffraction, optical microscopy, scanning and transmission electron microscopy, hardness and tensile testing and compared with that of the conventional AISI 316L steel. The results show that the as-produced HNASS exhibits uniform deformation up to failure without necking and brittle inter-granular fracture. By grain refinement, the yield and tensile strengths as well as the elongation to failure are increased by 17.8, 21.2, and 108.3 pct, respectively, as compared to the as-produced HNASS. However, despite more than a double increase in tensile toughness and elongation to failure, the brittle inter-granular fracture is not suppressed. The HNASSs plastically deform through formation of straight slip bands. TEM observations indicate development of planar arrays of dislocations in tensile-deformed HNASSs. The enhancement in tensile strength and toughness by grain refinement is discussed on the basis of straight slip bands formation, number of dislocations in pile-ups, and incompatibility strain developed between adjacent grains.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. P.J. Uggowitzer, R. Magdowski and M.O. Speidel: ISIJ Int., 1996, vol. 36, pp. 901-8.

    Article  Google Scholar 

  2. K.L. Chao, H.Y. Liao, J.J. Shyue and S.S. Lian: Metall. Mater. Trans. B, 2014, vol. 45, pp. 381-91.

    Article  Google Scholar 

  3. M. Sumita, T. Hanawa and S.H. Teoh: Mater. Sci. Eng. C, 2004, vol. 24, pp. 753-60.

    Article  Google Scholar 

  4. H. Li, Z. Jiang, Z. Zhang, B. Xu and F. Liu: J. Iron. Steel Res. Int., 2007, vol. 14, pp. 330–34.

    Article  Google Scholar 

  5. S. Rao G, V. Singh and L.K. Singhal: Mater. Sci. Eng. A, 2012, vol. 538, pp. 224-30.

    Article  Google Scholar 

  6. ASTM F 2229-02 Standard Specification for Wrought, Nitrogen Strengthened 23 Manganese-21Chromium-1Molybdenum Low-nickel Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29108).

  7. ASTM F 2581-07 Standard Specification for Wrought Nitrogen Strengthened 11 Manganese-17 Chromium-3 Molybdenum Low-Nickels Stainless Steel Alloy Bar and Wire for Surgical Implants (UNS S29225).

  8. J. Menzel, W. Kirschner and G. Stein: ISIJ Int., 1996, vol. 36, pp. 893-900.

    Article  Google Scholar 

  9. G. Balachandran, M.L. Bhatia, N.B. Ballal, and P. Krishna Rao: ISIJ Int., 2001, vol. 41, pp. 1018-27.

    Article  Google Scholar 

  10. V.G. Gavriljuk, H. Berns, High Nitrogen Steels-Structure, Properties, Application, Springer, Berlin, 1999.

    Book  Google Scholar 

  11. A. Yamamoto, Y. Kohyama and T. Hanawa: J. Biomed. Mater. Res., 2002, vol. 59, pp. 176-83.

    Article  Google Scholar 

  12. A. Yamamoto, R. Honma and M. Sumita: J. Biomed. Mater. Res., 1998, vol. 39, pp. 331-40.

    Article  Google Scholar 

  13. D. Kuroda, S. Hiromoto, T. Hanawa and Y. Katada: Mater. Trans., 2002, vol. 43, pp. 3100-04.

    Article  Google Scholar 

  14. T. Nakanishi, T. Tsuchiyama, H. Mitsuyasu, Y. Iwamoto and S. Takaki: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 186-94.

    Article  Google Scholar 

  15. J.F.D. Santos, C.M. Garzón and A.P. Tschiptschin: Mater. Sci. Eng. A, 2004, vol. 382, pp. 378-86

    Article  Google Scholar 

  16. J.H. Sung, J.H. Kong, D.K. Yoo, H.Y. On, D.J. Lee and H.W. Lee: Mater. Sci. Eng. A, 2008, vol. 489, pp. 38-43.

    Article  Google Scholar 

  17. D. Kuroda, T. Hanawa, T. Hibaru, S. Kuroda, M. Kobayashi and T. Kobayashi: Mater. Trans., 2003, vol. 44, pp. 414-20.

    Article  Google Scholar 

  18. R. Mohammadzadeh and A. Akbari: Mater. Sci. Eng. A, 2014, vol. 592, pp. 153-63.

    Article  Google Scholar 

  19. R. Mohammadzadeh and A. Akbari: Mater. Charact., 2014, vol. 93, pp. 119-128.

    Article  Google Scholar 

  20. B.D. Cullity, Elements of X-ray Diffraction, Second ed., London, Addison-Wesley, 1977.

    Google Scholar 

  21. P.J. Withers and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 2001, vol. 17, pp. 355-365.

    Article  Google Scholar 

  22. T. Tsuchiyama, Y. Fujii, Y. Terazawa, K. Nakashima, T. Ando and S. Takaki: ISIJ Int., 2008, vol. 48, pp. 861-867.

    Article  Google Scholar 

  23. R.L. Tobler and D. Meyn: Metall. Trans. A, 1988, vol. 19A, pp. 1626-31.

    Article  Google Scholar 

  24. S.C. Liu, T. Hashida, H. Takashi, H. Kuwano and Y. Hamaguchi: Metall. Mater. Trans. A, 1998, vol. 29, pp. 791-8.

    Article  Google Scholar 

  25. P. Müllner, C. Solenthaler, P.J. Uggowitzer and M.O. Speidel: Acta Metall. Mater., 1994, vol. 42, pp. 2211-17.

    Article  Google Scholar 

  26. P. Müllner: Mater. Sci. Eng. A, 1997, vol. 234-236, pp. 94-7.

    Article  Google Scholar 

  27. Y. Tomota, J. Nakano, Y. Xia and K. Inoue: Acta Mater., 1998, vol. 46, pp. 3099-108.

    Article  Google Scholar 

  28. W. Wang, S. Wang, K. Yang and Y. Shan: Mater. Des., 2009, vol. 30, pp. 1822-24.

    Article  Google Scholar 

  29. Y. Tomota, Y. Xia and K. Inoue : Acta Mater., 1998, vol. 46, pp. 1577-87.

    Article  Google Scholar 

  30. Y. Tomota and S. Endo: ISIJ Int., 1990, vol. 30, pp. 656-62.

    Article  Google Scholar 

  31. M. Tanaka, T. Onomoto, T. Tsuchiyama and K. Higashida: ISIJ Int., 2012, vol. 52, pp. 915-21.

    Google Scholar 

  32. J. Ishizaka, K. Orita and K. Terao: Tetsu-to-Hagané, 1992, vol. 78, pp. 1846-53.

    Google Scholar 

  33. V. Gerold and H.P. Karnthaler: Acta Metall., 1989, vol. 37, pp. 2177-83.

    Article  Google Scholar 

  34. M. Ojima, Y. Adachi, Y. Tomota, K. Ikeda, T. Kamiyama and Y. Katada: Mater. Sci. Eng. A, 2009, vol. 527, pp. 16-24.

    Article  Google Scholar 

  35. P. Müllner, C. Solenthaler, P.J. Uggowitzer and M.O. Speidel: Mater. Sci. Eng. A, 1993, vol. 164, pp. 164-9.

    Article  Google Scholar 

  36. S. Kubota, Y. Xia and Y. Tomota: ISIJ Int., 1998, vol. 38, pp. 474-81.

    Article  Google Scholar 

  37. P.C. Pistorius and M.D. Toit: The Twelfth International Ferroalloys Congress 2010, Finland, Helsinki, pp. 911–918.

  38. K.H. Lo, C.H. Shek and J.K.L. Lai: Mater. Sci. Eng. R, 2009, vol. 65, pp. 39-104.

    Article  Google Scholar 

  39. K. Wolf, H.J. Gudladt, H.A. Calderon and G. Kostorz: Acta Metall. Mater., 1994, vol. 42, pp. 3759-65.

    Article  Google Scholar 

  40. M.G. Mendiratta, S.M.L. Sastry and J.V. Smith: J. Mater. Sci., 1976, vol. 11, pp. 1835-42.

    Article  Google Scholar 

  41. K.A. Nibur and D.F. Bahr: Scripta Mater., 2003, vol. 49, pp. 1055-60.

    Article  Google Scholar 

  42. I. Karaman, H. Sehitoglu, H.J. Maier and Y.I. Chumlyakov: Acta Mater., 2001, vol. 49, pp. 3919-33.

    Article  Google Scholar 

  43. I.A. Yakubtsov, A. Ariapour and D.D. Perovic: Acta Mater., 1999, vol. 47, pp. 1271-9.

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Department of Mechanical Engineering of Denmark Technical University, Prof. Marcel A.J. Somers, Thomas L. Christiansen, H. Alimadadi, B. Grumsen Flemming, and S. Munch Steffen for access to the TEM and EBSD laboratories and stimulating discussion and their fruitful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Akbari.

Additional information

Manuscript submitted August 21, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akbari, A., Mohammadzadeh, R. Effect of Grain Refinement on the Mechanical Properties of a Nickel- and Manganese-Free High Nitrogen Austenitic Stainless Steel. Metall Mater Trans A 46, 1570–1579 (2015). https://doi.org/10.1007/s11661-015-2751-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2751-5

Keywords

Navigation