Skip to main content
Log in

Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

High-Mn TRIP steel with about 5 wt pct Mn was prepared by a thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region. The microstructural evolution and the mechanical properties of the used steel during such treatment were investigated. The results indicate that during warm deformation of martensite in the intercritical region, the decomposition of martensite was accelerated by warm deformation and the occurrence of dynamic recrystallization of ferrite led to the formation of equiaxed ferrite grains. Meanwhile, the reverse transformation of austenite was accelerated by warm deformation to some extent. During subsequent annealing in the intercritical region, static recrystallization of ferrite led to the increase in the fraction of equiaxed ferrite grains, and the formation of the reversed austenite was accelerated by the addition of the deformation-stored energy, while the stability of the reversed austenite was improved by the accelerated diffusions of C atoms and Mn atoms. As a whole, the mechanical properties of the used steel by the thermo-mechanical treatment based on warm deformation of martensite and subsequent short-time annealing in the intercritical region were comparable to the steels with similar compositions subjected to intercritical annealing for hours after cold rolling of martensite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. E. De Moor, P.J. Gibbs, J.G. Speer, D.K. Matlock, and J.G. Schroth: Iron Steel Technol., 2010, vol. 7, pp. 132-44.

    Google Scholar 

  2. D.K. Matlock and J.G. Speer: in Proceedings of the International Conference on Microstructure and Texture in Steels, A. Haldar, S. Suwas, and D. Bhattacharjee, eds., Springer, London, 2009, pp. 185–205.

  3. R.L. Miller: Metall. Trans., 1972, vol. 3, pp. 905-12.

    Article  Google Scholar 

  4. T. Furukawa: Mater. Sci. Technol., 1989, vol. 5, pp. 465-70.

    Article  Google Scholar 

  5. M.J. Merwin: Iron Steel Technol., 2008, vol. 5, pp. 66-84.

    Google Scholar 

  6. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691-702.

    Article  Google Scholar 

  7. S. Lee, S.-J. Lee, S.S. Kumar, K. Lee, and B.C. De Cooman: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3638-51.

    Article  Google Scholar 

  8. S. Lee, S.-J. Lee, and B.C. De Cooman: Acta Mater., 2011, vol. 59, pp. 7546-53.

    Article  Google Scholar 

  9. B.C. De Cooman. P.J. Gibbs, S. Lee, and D.K. Matlock: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2563-72.

    Article  Google Scholar 

  10. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong: Mater. Sci. Eng. A, 2011, vol. 528A, pp. 6661-6.

    Article  Google Scholar 

  11. C. Wang, J. Shi, C.Y. Wang, W.J. Hui, M.Q. Wang, H. Dong, and W.Q. Cao: ISIJ Int., 2011, vol. 51, pp. 651-6.

    Article  Google Scholar 

  12. H.W. Luo, J. Shi, C. Wang, W.Q. Cao, X.J. Sun, and H. Dong: Acta Mater., 2011, vol. 59, pp. 4002-14.

    Article  Google Scholar 

  13. C. Wang, W.Q. Cao, J. Shi, C.X. Huang, and H. Dong: Mater. Sci. Eng. A, 2013, vol. 562A, pp. 89-95.

    Article  Google Scholar 

  14. X.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong: Mater. Sci. Eng. A, 2012, vol. 532A, pp. 435-42.

    Article  Google Scholar 

  15. H.N. Han, C.S. Oh, G. Kim, and O. Kwon: Mater. Sci. Eng. A, 2009, vol. 499A, pp. 462-8.

    Article  Google Scholar 

  16. A. Arlazarov, M, Gouné, O. Bouaziz, A. Hazotte, G. Petitgand, and P. Barges: Mater. Sci. Eng. A, 2012, vol. 542A, pp. 31-9.

    Article  Google Scholar 

  17. O. Matsumura, Y. Sakuma, and H. Takechi: ISIJ Int., 1992, vol. 32, pp. 1014-20.

    Article  Google Scholar 

  18. O. Matsumura, Y. Sakuma, and H. Takechi: Scripta Metall., 1987, vol. 21, pp. 1301-6.

    Article  Google Scholar 

  19. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer: Int. J. Plast., 2000, vol. 16, pp. 1391-409.

    Article  Google Scholar 

  20. G. Frommeyer, U. Brux, and P. Neumann: ISIJ Int., 2003, vol. 43, pp. 438-46.

    Article  Google Scholar 

  21. Z.Q. Sun, W.Y. Wang, J.J. Qi, and A.M. Hu: Mater. Sci. Eng. A, 2002, vol. 334A, pp. 201-6.

    Article  Google Scholar 

  22. R.L. Miller: Trans. ASM, 1964, vol. 57, pp. 892-9.

    Google Scholar 

  23. D.J. Dyson, and B. Holmes: J. Iron Steel Inst., 1970, vol. 208, pp. 469-74.

    Google Scholar 

  24. S.J. Park, C.S. Oh, and S.J. Kim: in Proceedings of the International Conference on Advanced steels, Y.Q. Weng, H. Dong, and Y. Gan, Eds., Springer, Berlin, 2011, pp. 275–78.

  25. Y.Z. Bao, Y. Adachi, Y. Toomine, P.G. Xu, T. Suzuki, and Y. Tomota: Scripta Mater., 2005, vol. 53, pp. 1471-6.

    Article  Google Scholar 

  26. L.F. Li, W.Y. Yang, and Z.Q. Sun: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 624-35.

    Article  Google Scholar 

  27. L.F. Li, X.J. Zhang, W.Y. Yang, and Z.Q. Sun: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4337-45.

    Article  Google Scholar 

  28. L. Sun, K. Muszka, B. P. Wynne and E. J. Palmiere: Acta Mater., 2014, vol. 66, pp. 132-49.

    Article  Google Scholar 

  29. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881-92.

    Article  Google Scholar 

  30. P. Jacques, Q. Furnémont, A. Mertens, and F.Delannay: Philos. Mag., 2001, vol. 81, pp. 1789-812.

    Article  Google Scholar 

  31. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2331-41.

    Article  Google Scholar 

  32. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528A, pp. 4516-21.

    Article  Google Scholar 

  33. J.J. Wang, and S. van der Zwaad: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 1527-39.

    Article  Google Scholar 

  34. K. Asoo, Y. Tomota, S. Harjo, and Y. Okitsu: ISIJ Int., 2011, vol. 51, pp. 145-50.

    Article  Google Scholar 

  35. R. Blondé, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Brück, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2012, vol. 60, pp. 565-77.

    Article  Google Scholar 

Download references

Acknowledgments

Financial supports of the National Basic Research Program of China (2010CB630801), the Fundamental Research Funds for the Central Universities (FRF-TP-14-098A2) and the State Key Laboratory for Advanced Metals and Materials are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Li.

Additional information

Manuscript submitted September 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, Z., Li, L., Yang, W. et al. Microstructures and Mechanical Properties of High-Mn TRIP Steel Based on Warm Deformation of Martensite. Metall Mater Trans A 46, 1704–1714 (2015). https://doi.org/10.1007/s11661-015-2738-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2738-2

Keywords

Navigation