Skip to main content

Advertisement

Log in

Microstructure and Mechanical Properties of a Low-Carbon Mn-Si Multiphase Steel Based on Dynamic Transformation of Undercooled Austenite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure evolution of 0.20C-2.00Mn-2.00Si steel treated by the thermomechanical process to manufacture hot-rolled, transformation-induced plasticity (TRIP) steel based on dynamic transformation of undercooled austenite was investigated using a Gleeble 1500 (Dynamic Systems, Inc., Poestenkill, NY) hot simulation test machine in combination with light microscope (LM), scanning electron microscopy (SEM), and X-ray diffraction (XRD). The mechanical properties of this steel with different multiphase microstructures were also analyzed using room-temperature tensile tests. The results indicated that the multi-phase microstructures consisting of fine-grained ferrite with a size of 1–3 μm, bainite packets, and retained austenite and martensite were formed for the used steel by a thermo-mechanical process involving dynamic transformation of undercooled austenite, controlled cooling, isothermal bainite treatment and water-quenching. With the increase in the strain of hot deformation of undercooled austenite, the fraction of ferrite increased, that of bainite decreased, and that of martensite increased. At the same time, the fraction of retained austenite (RA), as well as the carbon content of RA, first increased and then decreased. For the used steel treated by such process, the tensile strength is about 1200 MPa with a total elongation of about 20 pct, and the product of tensile strength and total elongation can be up to 25,000 MPa × pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. Such a special compression sample is designed to obtain a relatively large sample for tensile tests using the Gleeble 1500 hot simulation test machine, for which a cylindrical sample of 6 to 10 mm in diameter and 10 to 15 mm in length is commonly used and is not suitable for preparing a sample for tensile tests.

References

  1. P.J. Jacques: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 259–65.

    Article  CAS  Google Scholar 

  2. J. Bouquerel, K. Verbeken, and B.C. De Cooman: Acta Mater., 2006, vol. 54, pp. 1443–56.

  3. P.J. Jacques, Q. Furnemont, F. Lani, T. Pardoen, and F. Delannay: Acta Mater., 2007, vol. 55, pp. 3695–3705.

    Article  Google Scholar 

  4. A.K. Srivastava, G. Jha, N. Gope, and S.B. Singh: Mater. Charact., 2006, vol. 57, pp. 127–35.

    Article  CAS  Google Scholar 

  5. A. Wasilkowska, P. Tsipouridis, E.A. Werner, A. Pichler, and S. Traint: J. Mater. Proc. Tech., 2004, vols. 157–158, pp. 633–36.

  6. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 1599–1609.

    Article  CAS  Google Scholar 

  7. S. Hashimoto, S. Ikeda, K. Sugimoto, and S. Miyake: ISIJ Int., 2004, vol. 44, pp. 1590–98.

    Article  CAS  Google Scholar 

  8. W.Y. Yang, L.F. Li, Y.Y. Yin, Z.Q. Sun, and X.T. Wang: Mater. Sci. Forum, 2010, vols. 654–656, pp. 250–53.

  9. E. De Moor, P.J. Gibbs, J.G. Speer, and D.K. Matlock: Iron Steel Technol., 2010, vol. 7, pp. 133–44.

  10. G.A. Thomas, J.G. Speer, and D.K. Matlock: Iron Steel Technol., 2008, vol. 5, pp. 209–17.

    CAS  Google Scholar 

  11. E. De Moor, J.G. Speer, D.K. Matlock, J.H. Kwak, and S.B. Lee: ISIJ Int., 2011, vol. 51, pp. 137–44.

  12. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  CAS  Google Scholar 

  13. P.J. Gibbs, E. De Moor, M.J. Merwin, B. Clausen, J.G. Speer, and D.K. Matlock: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 3691–3702.

  14. Z.Q. Sun, W.Y. Yang, J.J. Qi, and A.M. Hu: Mater. Sci. Eng. A, 2002, vol. 334A, pp. 201–06.

    Google Scholar 

  15. P. Jacqes, E. Girault, P. Harlet, and F. Delannay: ISIJ Int., 2001, vol. 41, pp. 1061–67.

    Article  Google Scholar 

  16. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittermeijer, A.G.S. Vanderzwa, J.H. Root, and N.B. Konyer: Scripta Metall. Mater., 1993, vol. 29, pp. 1011–16.

    Article  CAS  Google Scholar 

  17. R.F. Zhou, W.Y. Yang, R. Zhou, and Z.Q. Sun: J. Univ. Sci. Technol. Beijing, 2005, vol. 12, pp. 507–11.

    CAS  Google Scholar 

  18. S.C. Hong, S.H. Lim, K.J. Lee, D.H. Shin, and K.S. Lee: ISIJ Int., 2003, vol. 43, pp. 394–99.

    Article  CAS  Google Scholar 

  19. H.W. Xu, W.Y. Yang, and Z.Q. Sun: J. Univ. Sci. Technol. Beijing, 2008, vol. 15, pp. 556–60.

    Article  CAS  Google Scholar 

  20. H.W. Luo, L. Zhao, S.O. Kruijver, J. Sietsma, and S. van der Zwaag: ISIJ Int., 2003, vol. 43, pp. 1219–27.

  21. E. Girault, P. Jacques, Ph. Harlet, K. Mols, J. Van Humbeeck, E. Aernoudt, and F. Delannay: Mater. Charact., 1998, vol. 40, pp. 111–18.

  22. Y.I. Son, Y.K. Lee, K. Park, C.S. Lee, and D.H. Shin: Acta Mater., 2005, vol. 53, pp. 3125–34.

    Article  CAS  Google Scholar 

  23. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2331–41.

    Article  CAS  Google Scholar 

  24. J. Chiang, B. Lawrence, J.D. Boyd, and A.K. Pilkey: Mater. Sci. Eng. A, 2011, vol. 528A, pp. 4516–21.

    Google Scholar 

  25. H.W. Xu, W.Y. Yang, and Z.Q. Sun: J. Univ. Sci. Technol. Beijing, 2008, vol. 15, pp. 556–60.

    Article  CAS  Google Scholar 

  26. K. Asoo, Y. Tomota, S Harjo, and Y. Okitsu: ISIJ Int., 2011, vol. 51, pp. 145–50.

    Article  CAS  Google Scholar 

  27. R. Blonde, E. Jimenez-Melero, L. Zhao, J.P. Wright, E. Bruck, S. van der Zwaag, and N.H. van Dijk: Acta Mater., 2012, vol. 60, pp. 565–77.

Download references

Acknowledgments

Financial support from The National Basic Research Program of China (2010CB630801) and the State Key Laboratory for Advanced Metals and Materials is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Longfei Li.

Additional information

Manuscript submitted December 2, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, L., Zhang, X., Yang, W. et al. Microstructure and Mechanical Properties of a Low-Carbon Mn-Si Multiphase Steel Based on Dynamic Transformation of Undercooled Austenite. Metall Mater Trans A 44, 4337–4345 (2013). https://doi.org/10.1007/s11661-013-1785-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1785-9

Keywords

Navigation