Skip to main content
Log in

Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Considering the influence of the latent heat released during the solidification of high carbon liquid steel, a cellular automaton (CA) model coupled with the heat transfer was developed to investigate the growth of equiaxed dendrites which is controlled by the solute diffusion during the continuous casting process. Additionally, the growth of columnar dendrites and primary dendrite arm spacings were predicted and measured. The results show that the CA model is able to describe the growth behavior of equiaxed dendrites, especially at 5 K to 7 K melt undercoolings, and the approach adjusting the cooling medium temperature is reliable to keep the undercooling condition stable for equiaxed dendrites although its hysteresis is reinforced as the pre-set undercooling increases. With the increase of the melt undercooling, the growth of equiaxed dendrites becomes faster, and the thickness of dendritic arms increases slightly, however, the thickness of the diffusion layer in front of dendritic tips keeps constant. The growth of thin and tiny columnar dendrites will be confined due to the competition and absorbed by neighboring strong columnar dendrites, giving rise to the coarsening of columnar dendrites, which is observed both from the experimental observation and the numerical simulation. With the decrease of the cooling intensity, columnar dendrites get sparser, primary dendrite arm spacings increase, and secondary dendritic arms become undeveloped.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Yamazaki, Y. Natsume, H. Harada, and K. Ohsasa: ISIJ Int., 2006, vol. 46, pp. 903-908.

    Article  Google Scholar 

  2. Z.B. Hou, F. Jiang, and G.G. Cheng: ISIJ Int., 2012, vol. 52, pp. 1301-1309.

    Article  Google Scholar 

  3. B. Böttger, M. Apel, B. Santillana, and D.G. Eskin: Mater. Sci. Eng., 2012, vol. 33, p. 012107.

    Google Scholar 

  4. S. Luo, M.Y. Zhu, and S. Louhenkilpi: ISIJ Int., 2012, vol. 52, pp. 823-830.

    Article  Google Scholar 

  5. B. Böttger, M. Apel, B. Santillana, and D.G. Eskin: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 3765-3777.

    Article  Google Scholar 

  6. Y. Natsume, D. Takahashi, K. Kawashima, and K. Matsuura: ISIJ Int., 2013, vol. 53, pp: 838-847.

    Article  Google Scholar 

  7. J. A. Spittle and S.G.R. Brown: Acta Metal., 1989, vol. 37, pp. 1803-1810.

    Article  Google Scholar 

  8. X.H. Kang, Q. Du, D.Z. Li, and Y.Y. Li: Acta Metal. Sin., 2004, vol. 40, pp. 452-456.

    Google Scholar 

  9. Y.G. Guo, S.M. Li, L. Liu, and H.Z. Fu: Acta Metal. Sin., 2008, vol. 44, pp. 365-370.

    Google Scholar 

  10. Y.F. Shi, Q.Y. Xu, and B.C.Liu: Acta Phys. Sin., 2012, vol. 61, p. 108101.

    Google Scholar 

  11. X.F. Zhang and J.Z. Zhao: Acta Metal. Sin., 2012, vol. 48, pp. 615-620.

    Article  Google Scholar 

  12. M.F. Zhu and C.P. Hong: ISIJ Int., 2001, vol. 41, pp. 436-445.

    Article  Google Scholar 

  13. M.F. Zhu and D.M. Stefanescu: Acta Mater., 2007, vol. 55, pp. 1741-1755.

    Article  Google Scholar 

  14. M. Rappaz and C.A. Gandin: Acta Metall. Mater., 1993, vol. 41, pp. 345-360.

    Article  Google Scholar 

  15. L. Nastac: Acta Mater., 1999, vol. 47, pp. 4253-4262.

    Article  Google Scholar 

  16. L. Beltran-Sanchez and D.M. Stefanescu: Metall. Mater. Trans. A, 2003, vol. 34, pp. 367-382.

    Article  Google Scholar 

  17. Q. Li, Q.Y. Guo, D.Z. Li, B.N. Qian, D.M. Li, R. Li, and P.W. Zhang: Chin. Phys. Lett., 2004, vol. 21, pp. 143-145.

    Article  Google Scholar 

  18. Q. Li, D.Z. Li, and B.N. Qian: Acta Metal. Sin., 2004, vol. 40, pp. 1215-1220.

    Google Scholar 

  19. M. Yamazaki, J. Satoh, K. Ohsasa, and K. Matsuura: ISIJ Int., 2008, vol. 48, pp. 362-367.

    Article  Google Scholar 

  20. M. Nakagawa, Y. Natsume, and K. Ohsasa: ISIJ Int., 2006, vol. 46, pp. 909-913.

    Article  Google Scholar 

  21. D.M. Li, R. Li, and P.W. Zhang: Appl. Math. Model., 2007, vol. 31, pp. 971-982.

    Article  Google Scholar 

  22. Q. Li, Y. Wang, H.W. Zhang, S.S. Xie, and G.J. Huang: Ironmaking Steelmaking, 2009, vol. 36, pp. 442-450.

    Article  Google Scholar 

  23. S.C. Michelic, J.M. Thuswaldner, and C. Bernhard: Acta Mater., 2010, vol. 58, pp. 2738-2751.

    Article  Google Scholar 

  24. S. Luo and M.Y. Zhu: Comp. Mater. Sci., 2013, vol. 71, pp. 10-18.

    Article  Google Scholar 

  25. H. Yin and S.D. Felicelli: Acta Mater., 2010, vol. 58, pp. 1455-1465.

    Article  Google Scholar 

  26. J. Lipton, M.E. Glicksman, and W. Kurz: Mater. Sci. Eng., 1984, vol. 65, pp. 57-63.

    Article  Google Scholar 

  27. Y. Meng and B.G. Thomas: Metall. Mater. Trans. B, 2003, vol. 34, pp. 685-705.

    Article  Google Scholar 

  28. W.W. Wang, M.Y. Zhu, Z.Z. Cai, S. Luo, and C. Ji: Steel Res. Int., 2012, vol. 83, pp. 1152-1162.

    Article  Google Scholar 

  29. M. Alizadeh, A.J. Jahromi, and O. Abouali: ISIJ Int., 2008, vol. 48, pp. 161-169.

    Article  Google Scholar 

  30. P. Thévoz, J.L. Desbiolles, and M. Rappaz: Metall. Trans. A, 1989, vol. 20A: 311-322.

    Article  Google Scholar 

  31. G.F. Vander Voort: Metallography: Principles and Practice, McGraw Hill, Inc., New York, 1984, pp. 5–7.

  32. V. Ludlow, A. Normanton, A. Anderson, M. Thiele, J. Ciriza, J. Laraudogoitia, and W. van der Knoop: Ironmaking Steelmaking, 2005, vol. 32, pp. 68-74.

    Article  Google Scholar 

Download references

Acknowledgments

The authors sincerely acknowledge the financial support from National Natural Science Foundation of China No. 50925415 and Scientific Research Start-Up Foundation for the Young Teacher of Liaoning Province No. 20121010 and Specialized Research Fund for the Doctoral Program of Higher Education of China No. 20130042120042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miaoyong Zhu.

Additional information

Manuscript submitted February 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Luo, S. & Zhu, M. Numerical Simulation of Dendritic Growth of Continuously Cast High Carbon Steel. Metall Mater Trans A 46, 396–406 (2015). https://doi.org/10.1007/s11661-014-2632-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2632-3

Keywords

Navigation