Skip to main content
Log in

On Strength at Yield in Condensed Matter

  • Symposium: Dynamic Behavior of Materials VI
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper concerns the lower of a range of thresholds that control the response of condensed matter under loading in compression, from the ambient laboratory state to the point at which the bond strength is overcome and warm dense matter is formed. One oft-used term is yield stress and its variation with the rise time of the loading pulse are considered in this first paper. This threshold shows a correlation between the length scale swept by the rise of the pulse and the defect distribution within the target for a range of materials. Strain rate is also a useful term that reflects the evolution of the stress state within a target but must be defined for a particular volume element containing a particular defect distribution to reflect continuum conditions acting within and thus applies to a defined length scale within a target. This overview of behavior suggests concepts borrowed from rate-independent plasticity have served the community well but that to advance it may be necessary to use viscoplastic concepts in constitutive descriptions for the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bourne, N.K.: Int. J. Imp. Engng., 2012. 48: p. 107-115.

    Article  Google Scholar 

  2. Remington, B.A., P. Allen, E.M. Bringa, J. Hawreliak, D. Ho, K.T. Lorenz, H. Lorenzana, J.M. McNaney, M.A. Meyers, S.W. Pollaine, K. Rosolankova, B. Sadik, M.S. Schneider, D. Swift, J. Wark, and B. Yaakobi, Material dynamics under extreme conditions of pressure and strain rate. Materials Science and Technology, 2006. 22: p. 474-488.

    Article  Google Scholar 

  3. Frenkel, J., Z. Phys., 1926. 37: p. 572.

    Article  Google Scholar 

  4. Moriarty, J.A., L.X. Benedict, J.N. Glosli, R.Q. Hood, D.A. Orlikowski, M.V. Patel, P. Söderlind, F.H. Streitz, M. Tang, and L.H. Yang, Robust Quantum-Based Interatomic Potentials for Multiscale Modeling in Transition Metals. J. Mater. Res., 2006. 21: p. 563.

    Article  Google Scholar 

  5. Pokluda, J., M. Cerny, P. Sandera, and M. Sob, Calculations of theoretical strength: State of the art and history. Journal of Computer-Aided Materials Design, 2004. 11: p. 1-28.

    Article  Google Scholar 

  6. Vogler, T.J. and L.C. Chhabildas, Strength behavior of materials at high pressures. Int. J. Impact Engng, 2006. 33: p. 812-825.

    Article  Google Scholar 

  7. Jeanloz, R., The nature of the Earth’s core. Ann. Rev. Earth Planet. Sci., 1990. 18: p. 357-386.

    Article  Google Scholar 

  8. Karato, S.-i., Rheology of the Earth’s mantle: A historical review. Gondwana Research, 2010. 18(1): p. 17-45.

    Article  Google Scholar 

  9. G.T. Gray III: in ASM Handbook. Vol. 8: Mechanical Testing and Evaluation, H. Kuhn and D. Medlin, Editors. 2000, ASM International: Materials Park, Ohio. p. 530-538.

  10. Bourne, N.K., Materials in Mechanical Extremes: Fundamentals and Applications. 2013, Cambridge: Cambridge University Press.

    Book  Google Scholar 

  11. N.K. Bourne: Metall. Mater. Trans. A, 2014, DOI:10.1007/s11661-014-2419-6.

  12. Orowan, E., Z. Phys., 1934. 89: p. 634.

    Article  Google Scholar 

  13. Orowan, E., Z. Phys., 1934. 89: p. 605.

    Article  Google Scholar 

  14. Orowan, E., Z. Phys., 1934. 89: p. 614.

    Article  Google Scholar 

  15. Orowan, E., Rep. Progr. Phys., 1949. 12: p. 185.

    Article  Google Scholar 

  16. Hall, E.O., The Deformation and Ageing of Mild Steel: III Discussion of Results. Proc. Phys. Soc. London, 1951. 643: p. 747-753.

    Article  Google Scholar 

  17. Petch, N.J., The Cleavage Strength of Polycrystals. J. Iron Steel Inst. London, 1953. 173: p. 25-28.

    Google Scholar 

  18. Armstrong, R.W. and S.M. Walley, High strain rate properties of metals and alloys. Int. Mater. Rev., 2008. 53: p. 105–128.

    Article  Google Scholar 

  19. Follansbee, P.S., G. Regazzoni, and U.F. Kocks, The transition in drag-controlled deformation in copper at high strain rates. Inst. Phys. Conf. Ser., 1984. 70: p. 71–80.

    Google Scholar 

  20. Hoge, K.G. and A.K. Mukherjee, The temperature and strain rate dependence of the flow stress of tantalum. J. Mater. Sci., 1977. 12: p. 1666–1672.

    Article  Google Scholar 

  21. Lankford, J., The role of dynamic material properties in the performance of ceramic armour. Int. J. Appl. Ceram. Technol., 2004. 1: p. 205-210.

    Article  Google Scholar 

  22. Walley, S.M., J.E. Field, P.H. Pope, and N.A. Safford, A study of the rapid deformation behaviour of a range of polymers. Phil. Trans. R. Soc. Lond. A, 1989. 328: p. 1-33.

    Article  Google Scholar 

  23. Armstrong, R.W., Bertram Hopkinson’s pioneering work and the dislocation mechanics of high rate deformations and mechanically induced detonations. Phil. Trans. R. Soc. A., 2014. 372: 20130181.

    Article  Google Scholar 

  24. Bourne, N.K., Materials’ Physics in Extremes: Akrology. Metall. Trans. A., 2011. 42: p. 2975-2984.

    Article  Google Scholar 

  25. Chen, M.W., J.W. McAuley, D.P. Dandekar, and N.K. Bourne, Dynamic plasticity and failure of high-purity alumina under shock loading. Nature Materials, 2006. 5: p. 814-818.

    Article  Google Scholar 

  26. Bourne, N.K., J.C.F. Millett, M. Chen, D.P. Dandekar, and J.W. MacCauley, On the Hugoniot Elastic Limit in Polycrystalline Alumina. J. Appl. Phys., 2007. 102: 073514.

    Article  Google Scholar 

  27. Whitley, V.H., S.D. McGrane, D.E. Eakins, C.A. Bolme, D.S. Moore, and J.F. Bingert, The elastic-plastic response of aluminum films to ultrafast laser-generated shocks. J. Appl. Phys., 2011. 109: 013505.

    Article  Google Scholar 

  28. Winey, J.M., B.M. LaLone, P.B. Trivedi, and Y.M. Gupta, Elastic wave amplitudes in shock-compressed thin polycrystalline aluminum samples. J. Appl. Phys., 2009. 106: 073508.

    Article  Google Scholar 

  29. Taylor, J.W. and M.H. Rice, Elastic-plastic properties of iron. J. Appl. Phys., 1963. 34: p. 364-371.

    Article  Google Scholar 

  30. Bourne, N.K., G.T. Gray III, and J.C.F. Millett, On the shock response of cubic metals. J. Appl. Phys., 2009. 106: 091301.

    Article  Google Scholar 

  31. N.K. Bourne, J.C.F. Millett, M.W. Chen, D.P. Dandekar, and J.W. McCauley: in Shock Compression of Condensed Matter, M.D. Furnish, et al., eds., American Institute of Physics, Melville, New York, 2007, pp. 739–42.

  32. Millett, J.C.F., N.K. Bourne, and D.P. Dandekar, Delayed failure in shock-loaded silicon carbide. J. Appl. Phys., 2005. 97: 113513.

    Article  Google Scholar 

  33. Murphy, W.J., A. Higginbotham, G. Kimminau, B. Barbrel, E.M. Bringa, J. Hawreliak, R. Kodama, M. Koenig, W. McBarron, M. Meyers, A, B. Nagler, N. Ozaki, N. Park, B. Remington, S. Rothman, S.M. Vinko, T. Whitcher, and J.S. Wark, The strength of single crystal copper under uniaxial shock compression at 100 GPa. J. Phys. Condens. Matter 2010. 22: 065404.

    Article  Google Scholar 

Download references

Acknowledgments

The author wishes to acknowledge comments of great incite from the referees who pointed out pitfalls in this view and expanded applications and future directions more completely than himself.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neil K. Bourne.

Additional information

Manuscript submitted May 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourne, N.K. On Strength at Yield in Condensed Matter. Metall Mater Trans A 46, 4491–4497 (2015). https://doi.org/10.1007/s11661-014-2592-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2592-7

Keywords

Navigation