Skip to main content
Log in

Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of combined additions of Ca and P on the eutectic Si in a series of high purity Al-5 wt pct Si alloys have been investigated with the entrained droplet technique and complementary sets of conventional castings. Differential scanning calorimetry (DSC) and thermal analysis were used to investigate the eutectic droplet undercooling and the recalescence undercooling, respectively. Optical microscopy, SEM, EPMA, and TEM were employed to characterize the resultant microstructures. It was found that 250 ppm Ca addition to Al-5Si wt pct alloys with higher P contents leads to a significant increase of the eutectic droplet undercooling. For low or moderate cooling rates, the TEM results underline that Ca additions do not promote Si twinning. Thus, a higher twin density cannot be expected in Ca containing Al-Si alloys after, e.g., sand casting. Consequently, a refinement of the eutectic Si from coarse flake-like to fine plate-like structure, rather than a modification of the eutectic Si to a fibrous morphology, was achieved. This strongly indicates that the main purpose of Ca additions is to counteract the coarsening effect of the eutectic Si imposed by higher P concentrations. Significant multiple Si twinning was observed in melt-spun condition; however, this can be attributed to the higher cooling rate. After DSC heating (slow cooling), most of Si twins disappeared. Thus, the well-accepted impurity-induced twinning mechanism may be not valid in the case of Ca addition. The possible refinement mechanisms were discussed in terms of nucleation and growth of eutectic Si. We propose that the pre-eutectic Al2Si2Ca phase and preferential formation of Ca3P2 deactivate impurity particles, most likely AlP, poisoning the nucleation sites for eutectic Si.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. J.E. Gruzleski and B.M. Closset: The Treatment of Liquid Aluminum-Silicon Alloys, American Foundrymen´s Society, 1990.

  2. S.Z. Lu and A. Hellawell: Metall. Trans. A, 1987, vol. 18, pp. 1721-1733.

    Article  Google Scholar 

  3. S.Z. Lu and A. Hellawell: J. Cryst. Growth, 1985, vol. 73, pp. 316-328.

    Article  Google Scholar 

  4. K. Nogita, H. Yasuda, M. Yoshiya, S.D. McDonald, K. Uesugi, A. Takeuchi, and Y. Suzuki: J. Alloys Compd., 2010, vol. 489, pp. 415-420.

    Article  Google Scholar 

  5. A. Knuutinen, K. Nogita, S. McDonald, and A. Dahle: J. Light Met., 2001, vol. 1, pp. 229-240.

    Article  Google Scholar 

  6. Y.H. Cho and A.K. Dahle: Materials and AustCeram 2009 Conference, Gold Coast, Australia, 2009.

  7. S.S.S. Kumari, R.M. Pillai, and B.C. Pai: J. Alloys Compd., 2008, vol. 460, pp. 472-477.

    Article  Google Scholar 

  8. S. Kumari, R. Pillai, B. Pai, K. Nogita, and A. Dahle: Metall. Mater. Trans. A, 2006, vol. 37, pp. 2581-2587.

    Article  Google Scholar 

  9. S.S.S. Kumari, R.M. Pillai, and B.C. Pai: Int. Mater. Rev., 2005, vol. 50, pp. 216-238.

    Article  Google Scholar 

  10. C.R. Loper and J.I. Cho: AFS Trans., 2000, vol. 108, pp. 585-592.

    Google Scholar 

  11. L.F. Mondolfo, Aluminum alloys: structure and properties. 1976, London: Butterworths. IX, 971 s.

    Google Scholar 

  12. A. Abdollahi and J. Gruzleski: Int. J. Cast Met. Res., 1998, vol. 11, pp. 145-156.

    Google Scholar 

  13. J.H. Li, S. Suetsugu, Y. Tsunekawa, and P. Schumacher: Metall. Mater. Trans. A, 2013, vol. 44, pp. 669-681.

    Article  Google Scholar 

  14. J.H. Li and P. Schumacher: Int. J. Cast Met. Res., 2012, vol. 25, pp. 347-357.

    Article  Google Scholar 

  15. S. Khan and R. Elliott: J. Mater. Sci., 1994, vol. 29, pp. 736-741.

    Article  Google Scholar 

  16. C.J. Simensen, Ø. Nielsen, F. Hillion, and J. Voje: Metall. Mater. Trans. A, 2007, vol. 38, pp. 1448-1451.

    Article  Google Scholar 

  17. V.D. Belov, A.V. Kurdyumov, and S.V. Inkin: The Soviet Journal of non-ferrous metals, 1981, vol. 9, pp. 497.

    Google Scholar 

  18. M.B. Gokhshtein and L.S. Vasil’eva: Met. Sci. Heat Treat., 1970, vol. 12, pp. 591-593.

    Article  Google Scholar 

  19. H. Lescuyer, M. Allibert, and G. Laslaz: J. Alloys Compd., 1998, vol. 279, pp. 237-244.

    Article  Google Scholar 

  20. S.Z. Beer: J. Electrochem. Soc., 1969, vol. 116, pp. 263-265.

    Article  Google Scholar 

  21. S.-M. Liang and R. Schmid-Fetzer: CALPHAD, 2013, vol. 42, pp. 76–85.

  22. K. Nogita, S.D. McDonald, K. Tsujimoto, K. Yasuda, and A.K. Dahle: J. Electron Microsc., 2004, vol. 53, pp. 361-369.

    Article  Google Scholar 

  23. S.C. Flood and J.D. Hunt: Met. Sci., 1981, vol. 15, pp. 287-294.

    Article  Google Scholar 

  24. P.B. Crosley and L.F. Mondolfo: AFS Trans., 1966, vol. 74, pp. 53-64.

    Google Scholar 

  25. Y.H. Cho, H.C. Lee, K.H. Oh, and A.K. Dahle: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2435-2448.

    Article  Google Scholar 

  26. W. Jie, Z. Chen, W. Reif, and K. Müller: Metall. Mater. Trans. A, 2003, vol. 34, pp. 799-806.

    Article  Google Scholar 

  27. M. Calvo-Dahlborg, P.S. Popel, M.J. Kramer, M. Besser, J.R. Morris, and U. Dahlborg: J. Alloys Compd., 2013, vol. 550, pp. 9-22.

    Article  Google Scholar 

  28. C.C. Wang and C.S. Smith: TMS-AIME, 1950, vol. 188, pp. 136-138.

    Google Scholar 

  29. K.I. Moore, D.L. Zhang, and B. Cantor: Acta Metall. Mater., 1990, vol. 38, pp. 1327-1342.

    Article  Google Scholar 

  30. M. Zarif, B. McKay, J. Li, and P. Schumacher: BHM, 2010, vol. 155, pp. 506-511.

    Google Scholar 

  31. J.H. Li, M.Z. Zarif, G. Dehm, and P. Schumacher: Philos. Mag., 2012, vol. 92, pp. 3789-3805.

    Article  Google Scholar 

  32. A. Dahle, K. Nogita, S. McDonald, J. Zindel, and L. Hogan: Metall. Mater. Trans. A, 2001, vol. 32, pp. 949-960.

    Article  Google Scholar 

  33. A.K. Dahle, K. Nogita, S.D. McDonald, C. Dinnis, and L. Lu: Mater. Sci. Eng., A, 2005, vol. 413-414, pp. 243-248.

    Article  Google Scholar 

  34. T.H. Ludwig, P.L. Schaffer, and L. Arnberg: Metall. Mater. Trans. A, 2013, 44, 5796–5805.

    Article  Google Scholar 

  35. C.R. Ho and B. Cantor: Acta Metall. Mater., 1995, vol. 43, pp. 3231-3246.

    Article  Google Scholar 

  36. T.H. Ludwig, E. Schonhovd Dæhlen, P.L. Schaffer, and L. Arnberg: J. Alloys Compd., 2014, vol. 586, pp. 180-190.

    Article  Google Scholar 

  37. K. Nogita, A. Knuutinen, S. McDonald, and A. Dahle: J. Light Met., 2001, vol. 1, pp. 219-228.

    Article  Google Scholar 

  38. D. Zhang and B. Cantor: Metall. Trans. A, 1993, vol. 24, pp. 1195-1204.

    Article  Google Scholar 

  39. C.R. Ho and B. Cantor: J. Mater. Sci., 1995, vol. 30, pp. 1912-1920.

    Article  Google Scholar 

  40. W.T. Kim, D.L. Zhang, and B. Cantor: Metall. Trans. A, 1991, vol. 22, pp. 2487-2501.

    Article  Google Scholar 

  41. M. Zarif, B. McKay, and P. Schumacher: Metall. Mater. Trans. A, 2011, vol. 42, pp. 1684-1691.

    Article  Google Scholar 

  42. C.Y. Yeh, Z.W. Lu, S. Froyen, and A. Zunger: Phys. Rev. B: Condens. Matter, 1992, vol. 46, pp. 10086-10097.

    Article  Google Scholar 

  43. M.E. Straumanis and E.Z. Aka: J. Appl. Phys., 1952, vol. 23, pp. 330-334.

    Article  Google Scholar 

  44. M.E. Schlesinger: Chem. Rev., 2002, vol. 102, pp. 4267-4302.

    Article  Google Scholar 

  45. D. Turnbull and B. Vonnegut: Ind. Eng. Chem., 1952, vol. 44, pp. 1292-1298.

    Article  Google Scholar 

  46. B. Aronsson, T. Lundström, and S. Rundqvist, Borides, Silicides, and Phosphides: A Critical Review of Their Preparation, Properties and Crystal Chemistry. 1965: Wiley; Methuen.

    Google Scholar 

  47. K. Al-Helal, Y. Wang, I. Stone, and Z. Fan: Mater. Sci. Forum, 2013, vol. 765, pp. 117-122.

    Article  Google Scholar 

  48. S.D. McDonald, A.K. Dahle, J.A. Taylor, and D.H. StJohn: Metall. Mater. Trans. A, 2004, vol. 35, pp. 1829-1837.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Hydro Aluminium AS, Norway for financial support. Thomas Jaeger from Vigeland Metal AS, Norway is gratefully acknowledged for the generous supply of Al5N grade aluminum. In addition, the authors acknowledge Reinhard Pippan for granting access to the TEM facilities in The Erich Schmidt Institute of Materials Science of the Austrian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Hartmut Ludwig.

Additional information

Manuscript submitted April 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ludwig, T.H., Li, J., Schaffer, P.L. et al. Refinement of Eutectic Si in High Purity Al-5Si Alloys with Combined Ca and P Additions. Metall Mater Trans A 46, 362–376 (2015). https://doi.org/10.1007/s11661-014-2585-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2585-6

Keywords

Navigation