Skip to main content
Log in

Thixoforming of A356/SiC and A356/TiB2 Nanocomposites Fabricated by a Combination of Green Compact Nanoparticle Incorporation and Ultrasonic Treatment of the Melted Compact

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thixoforming is a type of semi-solid processing which is based on forming metals in the semi-solid state rather than fully liquid or solid state. There have been no reports of the thixoforming of nanocomposites in the literature. The incorporation of ceramic nanoparticles into liquid metals is a challenging task for the fabrication of metal matrix nanocomposites due to their large surface-to-volume ratio and poor wettability. Previous research work by a number of workers has highlighted the challenges with the incorporation of nanoparticles into liquid aluminum alloy. In the present study, SiC and TiB2 nanoparticles with an average diameter between 20 and 30 nm were firstly incorporated into green compacts by a powder forming route, and then the compacts were melted and treated ultrasonically. The microstructural studies reveal that the engulfment and relatively effective distribution of the nanoparticles into the melt were achieved. The hardness was considerably improved with only 0.8 wt pct addition of the nanoparticles. The nanocomposites were successfully thixoformed at a solid fraction between 0.65 and 0.70. The microstructures, hardness, and tensile mechanical properties of the thixoformed nanocomposites were investigated and compared with those of the as-received A356 and thixoformed A356 alloys. The tensile properties of the thixoformed nanocomposites were significantly enhanced compared to thixoformed A356 alloy without reinforcement, indicating the strengthening effects of the nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. X.C. Tong and H.S. Fang: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 893-902.

    Article  Google Scholar 

  2. S.F. Hassan and M. Gupta: Mater. Sci. Technol., 2004, vol. 20, pp. 1383-88.

    Article  Google Scholar 

  3. S.F. Hassan and M. Gupta: J. Compos. Mater., 2007, vol. 41, pp. 2533-43.

    Article  Google Scholar 

  4. A. Mazahery, H. Abdizadeh, and H.R. Baharvandi: Mater. Sci. Eng. A, 2009, vol. 518, pp. 61-64.

    Article  Google Scholar 

  5. Y. Yang, J. Lan, and X. Li: Mater. Sci. Eng. A, 2004, vol. 380, pp. 378-83.

    Article  Google Scholar 

  6. K. Akio, O. Atsushi, K. Toshiro, and T. Hiroyuki: J. Jpn. Inst. Light Met., 1999, vol. 49, pp. 149-54.

    Article  Google Scholar 

  7. M. De Cicco, H. Konishi, G. Cao, H. Choi, L.S. Turng, J.H. Perepezko, S. Kou, R. Lakes, and X. Li: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 3038-45.

    Article  Google Scholar 

  8. Y. Li, Y.H. Zhao, V. Ortalan, W. Liu, Z.H. Zhang, R.G. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Mater. Sci. Eng. A, 2009, vol. 527, pp. 305-16.

    Article  Google Scholar 

  9. Z. Zhang and D.L. Chen: Scr. Mater., 2006, vol. 54, pp. 1321-26.

    Article  Google Scholar 

  10. M. De Cicco, L.S. Turng, X. Li, and J.H. Perepezko: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2323-30.

    Article  Google Scholar 

  11. E.A. Feest: Composites, 1994, vol. 25, pp. 75-86.

    Article  Google Scholar 

  12. A.E. Karantzalis, S. Wyatt, and A.R. Kennedy: Mater. Sci. Eng. A, 1997, vol. 237, pp. 200-06.

    Article  Google Scholar 

  13. M.G. McKimpson and T.E. Scott: Mater. Sci. Eng. A, 1989, vol. 107, pp. 93-106.

    Article  Google Scholar 

  14. J. Lan, Y. Yang, and X. Li: Mater. Sci. Eng. A, 2004, vol. 386, pp. 284-90.

    Article  Google Scholar 

  15. H. Choi, M. Jones, H. Konishi, and X. Li: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 738-46.

    Article  Google Scholar 

  16. Y. Yang and X. Li: J. Manuf. Sci. Eng. Trans. ASME, 2007, vol. 129, pp. 252-55.

    Article  Google Scholar 

  17. G. Cao, H. Konishi, and X. Li: J. Manuf. Sci. Eng. Trans. ASME, 2008, vol. 130, pp. 031105.1-031105.6.

    Google Scholar 

  18. X. Li, Y. Yang, and X. Cheng: J. Mater. Sci., 2004, vol. 39, pp. 3211-12.

    Article  Google Scholar 

  19. S. Kandemir, D.P. Weston, and H.V. Atkinson: Solid State Phenom., 2013, vol. 192-193, pp. 66-71.

    Google Scholar 

  20. O. Dahlem, J. Reisse, and V. Halloin: Chem. Eng. Sci., 1999, vol. 54, pp. 2829-38.

    Article  Google Scholar 

  21. P.R. Gogate, P.A. Tatake, P.M. Kanthale, and A.B. Pandit: AIChE J., 2002, vol. 48, pp. 1542-60.

    Article  Google Scholar 

  22. A. Kumar, T. Kumaresan, A.B. Pandit, and J.B. Joshi: Chem. Eng. Sci., 2006, vol. 61, pp. 7410-20.

    Article  Google Scholar 

  23. S. Kandemir, A. Yalamanchili, and H. V. Atkinson: Key Eng. Mater., 2012, vol. 504-506, pp. 339-44.

    Article  Google Scholar 

  24. H. Choi, Y. Sun, B.P. Slater, H. Konishi, and X. Li: Adv. Eng. Mater., 2012, vol. 14, pp. 291-95.

    Article  Google Scholar 

  25. S. Kandemir: Ph.D. Thesis, University of Leicester, Leicester, UK, 2013.

  26. D.H. Kirkwood: Int. Mater. Rev., 1994, vol. 39, pp. 173-89.

    Article  Google Scholar 

  27. Z. Fan: Int. Mater. Rev., 2002, vol. 47, pp. 49-85.

    Article  Google Scholar 

  28. H.V. Atkinson: Prog. Mater. Sci., 2005, vol. 50, pp. 341-412.

    Article  Google Scholar 

  29. A.R.A. McLelland, H.V. Atkinson, P. Kapranos, and D.H. Kirkwood: Mater. Lett., 1991, vol. 11, pp. 26-30.

    Article  Google Scholar 

  30. P.J. Ward, H.V. Atkinson, P.R.G. Anderson, L.G. Elias, B. Garcia, L. Kahlen, and J.M. Rodriguez-Ibabe: Acta Mater., 1996, vol. 44, pp. 1717-27.

    Article  Google Scholar 

  31. M. Wenzelburger, M.N. Alsina, K. von Niessen, and R. Gadow: Solid State Phenom., 2006, vol. 116-117, pp. 375-78.

    Article  Google Scholar 

  32. L.S. Turng, M.P. De Cicco, and X. Li: United States Patent US 7,509,993, 2009.

  33. M.P. De Cicco, X. Li, and L.S. Turng: J. Mater. Process. Technol., 2009, vol. 209, pp. 5881-85.

    Article  Google Scholar 

  34. J.C. Lee, J.Y. Byun, S.B. Park, and H.I. Lee: Acta Mater., 1998, vol. 46, pp. 1771-80.

    Article  Google Scholar 

  35. D.A. Weirauch, W.J. Krafick, G. Ackart, and P.D. Ownby: J. Mater. Sci., 2005, vol. 40, pp. 2301-06.

    Article  Google Scholar 

  36. A.R.A. McLelland, H.V. Atkinson, and P.R.G. Anderson: Mater. Sci. Technol., 1999, vol. 15, pp. 939-45.

    Article  Google Scholar 

  37. H.V. Atkinson, P. Kapranos, D. Liu, S.A. Chayong, and D.H. Kirkwood: Mater. Sci. Forum, 2002, vol. 396-402, pp. 131-36.

    Article  Google Scholar 

  38. J. Crofton, S.E. Mohney, J.R. Williams and T. Isaacs-Smith: Solid-State Electron., 2002, vol. 46, pp. 109-113.

    Article  Google Scholar 

  39. G. Wilde and J.H. Perepezko: Mater. Sci. Eng. A, 2000, vol. 283, pp. 25-37.

    Article  Google Scholar 

  40. X. Li, Y. Yang and D. Weiss: Metall. Sci. Technol., 2008, vol. 26, pp. 12-20.

    Google Scholar 

  41. W. Lapkowski and M. Pietrzyk: J. Mater. Process. Technol., 1994, vol. 45, pp. 365-70.

    Article  Google Scholar 

  42. D. Liu: Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2003.

  43. S.R. Yu, H.K. Feng, Y.L. Li, and L.Y. Gong: J. Alloys Compd., 2009, vol. 484, pp. 360-64.

    Article  Google Scholar 

  44. M.K. Akbari, O. Mirzaee, and H.R. Baharvandi: Mater. Des., 2013, vol. 46, pp. 199-205.

    Article  Google Scholar 

  45. D. Wang, M.P. De Cicco, and X. Li: Mater. Sci. Eng. A, 2012, vol. 532, pp. 396-400.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the University of Leicester for the provision of laboratory facilities, and Prof Jan Dutkiewicz and Dr Lukasz Rogal at the Institute of Metallurgy and Materials Science of the Polish Academy of Sciences, Krakow, Poland, for carrying out the tablet preparation. The Turkish Ministry of National Education is also thanked for the award of a PhD scholarship to Sinan Kandemir.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Kandemir.

Additional information

Manuscript submitted April 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kandemir, S., Atkinson, H.V., Weston, D.P. et al. Thixoforming of A356/SiC and A356/TiB2 Nanocomposites Fabricated by a Combination of Green Compact Nanoparticle Incorporation and Ultrasonic Treatment of the Melted Compact. Metall Mater Trans A 45, 5782–5798 (2014). https://doi.org/10.1007/s11661-014-2501-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2501-0

Keywords

Navigation