Skip to main content

Advertisement

Log in

Microstructure and mechanical properties of an in-situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting

  • Composites & nanocomposites
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Selective electron beam melting (SEBM) has been recently employed for additive manufacturing (AM) Al alloys but showing comparatively low hardness and strength. In this work, SEBM technique was employed to additive manufacture an in-situ TiB2 particle reinforced AlSi10Mg composite. With optimized processing parameters, the SEBM TiB2/AlSi10Mg composite showed good surface quality and a high relative density. The as-printed composite exhibited a refined equiaxed grain structure with an average size of 27.7 µm. The eutectic Si phase was mostly spherical and uniformly distributed in the Al matrix, while the nano-sized TiB2 particles were partly agglomerated. The resultant microstructure was associated with the combined effect of the rapid solidification and annealing-like process during SEBM. Additionally, TiB2 particles facilitated grain refinement by enhancing the heterogeneous nucleation and retarding grain growth. The SEBM TiB2/AlSi10Mg composite presented a yield strength (YS) and ultimate tensile strength (UTS) of 103.6 MPa and 165.4 MPa, respectively, with an appreciable elongation of 15% at as-printed state. After a T6-like treatment, the YS and UTS of the composite were further improved to 225 MPa and 316 MPa, respectively, and an elongation of 12% was maintained. This paper shows the potency of SEBM in AM metal matrix composites (MMCs) with both agreeable strength and ductility.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data supporting the findings of the current study are available from the corresponding authors upon request.

References

  1. Gokuldoss PK, Kolla S, Eckert J (2017) Additive manufacturing processes: selective laser melting, electron beam melting and binder jetting-selection guidelines. Mater 10:672. https://doi.org/10.3390/ma10060672

    Article  CAS  Google Scholar 

  2. Li XP, Ji G, Chen Z et al (2017) Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193. https://doi.org/10.1016/j.actamat.2017.02.062

    Article  CAS  Google Scholar 

  3. Zhang J, Song B, Wei Q, Bourell D, Shi Y (2019) A review of selective laser melting of aluminum alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35:270–284. https://doi.org/10.1016/j.jmst.2018.09.004

    Article  CAS  Google Scholar 

  4. Ma S, Li Y, Kan W et al (2022) Enhancement of grain refinement and heat resistance in TiB2-reinforced Al-Cu-Mg-Fe-Ni matrix composite additive manufactured by electron beam melting. J Alloys Compd. https://doi.org/10.1016/j.jallcom.2022.166395

    Article  Google Scholar 

  5. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164. https://doi.org/10.1179/1743280411Y.0000000014

    Article  CAS  Google Scholar 

  6. Zhang H, Zhu H, Nie X, Yin J, Hu Z, Zeng X (2017) Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy. Scr Mater 134:6–10. https://doi.org/10.1016/j.scriptamat.2017.02.036

    Article  CAS  Google Scholar 

  7. Brice CA, Tayon WA, Newman JA, Kral MV, Bishop C, Sokolova A (2018) Effect of compositional changes on microstructure in additively manufactured aluminum alloy 2139. Mater Charact 143:50–58. https://doi.org/10.1016/j.matchar.2018.04.002

    Article  CAS  Google Scholar 

  8. Kenevisi MS, Lin F (2020) Selective electron beam melting of high strength Al2024 alloy microstructural characterization and mechanical properties. J Alloys Compd 843:155866. https://doi.org/10.1016/j.jallcom.2020.155866

    Article  CAS  Google Scholar 

  9. Murr LE, Gaytan SM, Ramirez DA et al (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28:1–14. https://doi.org/10.1016/S1005-0302(12)60016-4

    Article  CAS  Google Scholar 

  10. Sun S, Zheng L, Peng H, Zhang H (2016) Microstructure and mechanical properties of Al-Fe-V-Si aluminum alloy produced by electron beam melting. Mater Sci Eng A Struct Mater 659:207–214. https://doi.org/10.1016/j.msea.2016.02.053

    Article  CAS  Google Scholar 

  11. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J (2011) High power selective laser melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278. https://doi.org/10.1016/j.phpro.2011.03.035

    Article  CAS  Google Scholar 

  12. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211:275–284. https://doi.org/10.1016/j.jmatprotec.2010.09.019

    Article  CAS  Google Scholar 

  13. Feng Z, Tan H, Fang Y, Lin X, Huang W (2022) Selective laser melting of TiB2/AlSi10Mg composite: Processability, microstructure and fracture behavior. J Mater Process Technol 299:117386. https://doi.org/10.1016/j.jmatprotec.2021.117386

    Article  CAS  Google Scholar 

  14. Xiao YK, Bian ZY, Wu Y et al (2019) Effect of nano-TiB2 particles on the anisotropy in an AlSi10Mg alloy processed by selective laser melting. J Alloys Compd 798:644–655. https://doi.org/10.1016/j.jallcom.2019.05.279

    Article  CAS  Google Scholar 

  15. Galarraga H, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2016) Effects of the microstructure and porosity on properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Addit Manuf 10:47–57. https://doi.org/10.1016/j.addma.2016.02.003

    Article  CAS  Google Scholar 

  16. Galarraga H, Warren RJ, Lados DA, Dehoff RR, Kirka MM, Nandwana P (2017) Effects of heat treatments on microstructure and properties of Ti-6Al-4V ELI alloy fabricated by electron beam melting (EBM). Mater Sci Eng A Struct Mater 685:417–428. https://doi.org/10.1016/j.msea.2017.01.019

    Article  CAS  Google Scholar 

  17. Murr LE, Gaytan SM, Ceylan A et al (2010) Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Mater 58:1887–1894. https://doi.org/10.1016/j.actamat.2009.11.032

    Article  CAS  Google Scholar 

  18. Murr LE, Martinez E, Pan XM et al (2013) Microstructures of Rene 142 nickel-based superalloy fabricated by electron beam melting. Acta Mater 61:4289–4296. https://doi.org/10.1016/j.actamat.2013.04.002

    Article  CAS  Google Scholar 

  19. Strondl A, Palm M, Gnauk J, Frommeyer G (2011) Microstructure and mechanical properties of nickel based superalloy IN718 produced by rapid prototyping with electron beam melting (EBM). Mater Sci Technol 27:876–883. https://doi.org/10.1179/026708309X12468927349451

    Article  CAS  Google Scholar 

  20. Kuwabara K, Shiratori H, Fujieda T, Yamanaka K, Koizumi Y, Chiba A (2018) Mechanical and corrosion properties of AlCoCrFeNi high-entropy alloy fabricated with selective electron beam melting. Addit Manuf 23:264–271. https://doi.org/10.1016/j.addma.2018.06.006

    Article  CAS  Google Scholar 

  21. Xiao B, Jia W, Tang H, Wang J, Zhou L (2022) Microstructure and mechanical properties of WMoTaNbTi refractory high-entropy alloys fabricated by selective electron beam melting. J Mater Sci Technol 108:54–63. https://doi.org/10.1016/j.jmst.2021.07.041

    Article  Google Scholar 

  22. Gockel J, Beuth J, Taminger K (2014) Integrated control of solidification microstructure and melt pool dimensions in electron beam wire feed additive manufacturing of Ti-6Al-4V. Addit Manuf 1–4:119–126. https://doi.org/10.1016/j.addma.2014.09.004

    Article  Google Scholar 

  23. Tan S, Wang Y, Liu W, Wang H, Jia P, Ding Y (2022) Anisotropy reduction of additively manufactured AlSi10Mg for metal mirrors. J Mater Sci 57:11934–11948. https://doi.org/10.1007/s10853-022-07080-4

    Article  CAS  Google Scholar 

  24. Tradowsky U, White J, Ward RM, Read N, Reimers W, Attallah MM (2016) Selective laser melting of AlSi10Mg: Influence of post-processing on the microstructural and tensile properties development. Mater Des 105:212–222. https://doi.org/10.1016/j.matdes.2016.05.066

    Article  CAS  Google Scholar 

  25. Wang L, Jiang X, Zhu Y, Ding Z, Zhu X, Sun J, Yan B (2018) Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting. Adv Mater Sci Eng 2018:1–12. https://doi.org/10.1155/2018/7814039

    Article  CAS  Google Scholar 

  26. Hadadzadeh A, Amirkhiz BS, Li J, Mohammadi M (2018) Columnar to equiaxed transition during direct metal laser sintering of AlSi10Mg alloy: effect of building direction. Addit Manuf 23:121–131. https://doi.org/10.1016/j.addma.2018.08.001

    Article  CAS  Google Scholar 

  27. Bian H, Aoyagi K, Zhao Y, Maeda C, Mouri T, Chiba A (2020) Microstructure refinement for superior ductility of Al–Si alloy by electron beam melting. Addit Manuf 32:100982. https://doi.org/10.1016/j.addma.2019.100982

    Article  CAS  Google Scholar 

  28. Li W, Li S, Liu J et al (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A Struct Mater 663:116–125. https://doi.org/10.1016/j.msea.2016.03.088

    Article  CAS  Google Scholar 

  29. Ma K, Wen H, Hu T et al (2014) Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy. Acta Mater 62:141–155. https://doi.org/10.1016/j.actamat.2013.09.042

    Article  CAS  Google Scholar 

  30. Tjong SC, Ma ZY (2000) Microstructural and mechanical characteristics of in situ metal matrix composites. Mater Sci Eng R Rep: A Rev J 29:49–113. https://doi.org/10.1016/S0927-796X(00)00024-3

    Article  Google Scholar 

  31. Fan Z, Wang Y, Zhang Y et al (2015) Grain refining mechanism in the Al/Al–Ti–B system. Acta Mater 84:292–304. https://doi.org/10.1016/j.actamat.2014.10.055

    Article  CAS  Google Scholar 

  32. Hu L, Chen D (2015) Field activated and pressure assisted bonding mechanism of ultra-hard materials of AlMgB 14 to metal. Ferroelectrics 482:136–144. https://doi.org/10.1080/00150193.2015.1081533

    Article  CAS  Google Scholar 

  33. Schaffer PL, Miller DN, Dahle AK (2007) Crystallography of engulfed and pushed TiB2 particles in aluminium. Scr Mater 57:1129–1132. https://doi.org/10.1016/j.scriptamat.2007.08.009

    Article  CAS  Google Scholar 

  34. Kapoor R, Kumar N, Mishra RS, Huskamp CS, Sankaran KK (2010) Influence of fraction of high angle boundaries on the mechanical behavior of an ultrafine grained Al–Mg alloy. Mater Sci Eng A Struct Mater 527:5246–5254. https://doi.org/10.1016/j.msea.2010.04.086

    Article  CAS  Google Scholar 

  35. Ma SM, Zhang P, Ji G et al (2014) Microstructure and mechanical properties of friction stir processed Al–Mg–Si alloys dispersion-strengthened by nanosized TiB2 particles. J Alloys Compd 616:128–136. https://doi.org/10.1016/j.jallcom.2014.07.092

    Article  CAS  Google Scholar 

  36. Chen M, Li X, Ji G et al (2017) Novel composite powders with uniform TiB2 nano-particle distribution for 3D printing. Appl Sci 7:250. https://doi.org/10.3390/app7030250

    Article  CAS  Google Scholar 

  37. Xiao YK, Chen H, Bian ZY et al (2022) Enhancing strength and ductility of AlSi10Mg fabricated by selective laser melting by TiB2 nanoparticles. J Mater Sci Technol 109:254–266. https://doi.org/10.1016/j.jmst.2021.08.030

    Article  Google Scholar 

  38. Bösch D, Pogatscher S, Hummel M, Fragner W, Uggowitzer PJ, Göken M, Höppel HW (2015) Secondary Al-Si-Mg high-pressure die casting alloys with enhanced ductility. Metall Mater Trans A 46:1035–1045. https://doi.org/10.1007/s11661-014-2700-8

    Article  CAS  Google Scholar 

  39. Chen S, Tan Q, Gao W et al (2022) Effect of heat treatment on the anisotropy in mechanical properties of selective laser melted AlSi10Mg. Mater Sci Eng A Struct Mater 858:144130. https://doi.org/10.1016/j.msea.2022.144130

    Article  CAS  Google Scholar 

  40. Han Y, Liu X, Bian X (2002) In situ TiB2 particulate reinforced near eutectic Al-Si alloy composites. Compos Part A Appl Sci Manufact 33:439–444. https://doi.org/10.1016/S1359-835X(01)00124-5

    Article  Google Scholar 

  41. Yan W, Ge W, Qian Y et al (2017) Multi-physics modeling of single/multiple-track defect mechanisms in electron beam selective melting. Acta Mater 134:324–333. https://doi.org/10.1016/j.actamat.2017.05.061

    Article  CAS  Google Scholar 

  42. Antonysamy AA, Meyer J, Prangnell PB (2013) Effect of build geometry on the β-grain structure and texture in additive manufacture of Ti-6Al-4V by selective electron beam melting. Mater Charact 84:153–168. https://doi.org/10.1016/j.matchar.2013.07.012

    Article  CAS  Google Scholar 

  43. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  CAS  Google Scholar 

  44. Dong QIU, Zhang M-X (2014) The nucleation crystallography and wettability of Mg grains on active Al2Y inoculants in an Mg-10 wt% Y Alloy. J Alloys Compd 586:39–44. https://doi.org/10.1016/j.jallcom.2013.10.042

    Article  CAS  Google Scholar 

  45. Greer AL, Bunn AM, Tronche A, Evans PV, Bristow DJ (2000) Modelling of inoculation of metallic melts: application to grain refinement of aluminium by Al–Ti–B. Acta Mater 48:2823–2835. https://doi.org/10.1016/S1359-6454(00)00094-X

    Article  CAS  Google Scholar 

  46. Liu YJ, Li SJ, Wang HL et al (2016) Microstructure, defects and mechanical behavior of beta-type titanium porous structures manufactured by electron beam melting and selective laser melting. Acta Mater 113:56–67. https://doi.org/10.1016/j.actamat.2016.04.029

    Article  CAS  Google Scholar 

  47. Xiao H, Zhang C, Zhu H (2023) Effect of direct aging and annealing on the microstructure and mechanical properties of AlSi10Mg fabricated by selective laser melting. Rapid Prototyp J 29:118–127. https://doi.org/10.1108/RPJ-03-2022-0085

    Article  Google Scholar 

  48. Goh CS, Wei J, Lee LC, Gupta M (2007) Properties and deformation behaviour of Mg-Y2O3 nanocomposites. Acta Mater 55:5115–5121. https://doi.org/10.1016/j.actamat.2007.05.032

    Article  CAS  Google Scholar 

  49. Gao C, Wu W, Shi J, Xiao Z, Akbarzadeh AH (2020) Simultaneous enhancement of strength, ductility, and hardness of TiN/AlSi10Mg nanocomposites via selective laser melting. Addit Manuf 34:101378. https://doi.org/10.1016/j.addma.2020.101378

    Article  CAS  Google Scholar 

  50. Sanaty-Zadeh A (2012) Comparison between current models for the strength of particulate-reinforced metal matrix nanocomposites with emphasis on consideration of Hall-Petch effect. Mater Sci Eng A Struct Mater 531:112–118. https://doi.org/10.1016/j.msea.2011.10.043

    Article  CAS  Google Scholar 

  51. Lin T-C, Cao C, Sokoluk M et al (2019) Aluminum with dispersed nanoparticles by laser additive manufacturing. Nat Commun 10:4124–4129. https://doi.org/10.1038/s41467-019-12047-2

    Article  CAS  Google Scholar 

  52. Sekine H, Rong C (1995) A combined microstructure strengthening analysis of SiCp/Al metal matrix composites. Composites 26:183–188. https://doi.org/10.1016/0010-4361(95)91381-E

    Article  CAS  Google Scholar 

  53. Girelli L, Tocci M, Gelfi M, Pola A (2019) Study of heat treatment parameters for additively manufactured AlSi10Mg in comparison with corresponding cast alloy. Mater Sci Eng A Struct Mater 739:317–328. https://doi.org/10.1016/j.msea.2018.10.026

    Article  CAS  Google Scholar 

  54. Cheng W, Liu Y, Xiao X, Huang B, Zhou Z, Liu X (2022) Microstructure and mechanical properties of a novel (TiB2+TiC)/AlSi10Mg composite prepared by selective laser melting. Mater Sci Eng A Struct Mater 834:142435. https://doi.org/10.1016/j.msea.2021.142435

    Article  CAS  Google Scholar 

  55. Xie X, Chen C, Chen Z et al (2021) Effect of annealing treatment on microstructure and mechanical properties of cold sprayed TiB2/AlSi10Mg composites. Surf. Interfaces 26:101341. https://doi.org/10.1016/j.surfin.2021.101341

    Article  CAS  Google Scholar 

  56. Hadadzadeh A, Baxter C, Amirkhiz BS, Mohammadi M (2018) Strengthening mechanisms in direct metal laser sintered AlSi10Mg: comparison between virgin and recycled powders. Addit Manuf 23:108–120. https://doi.org/10.1016/j.addma.2018.07.014

    Article  CAS  Google Scholar 

  57. Körner C (2016) Additive manufacturing of metallic components by selective electron beam melting - a review. Int Mater Rev 61:361–377. https://doi.org/10.1080/09506608.2016.1176289

    Article  CAS  Google Scholar 

  58. Geng J, Hong T, Shen Y et al (2017) Microstructural stability of in-situ TiB2/Al composite during solution treatment. Mater Charact 124:50–57. https://doi.org/10.1016/j.matchar.2016.11.032

    Article  CAS  Google Scholar 

  59. Ma S, Wang Y, Wang X (2020) Microstructures and mechanical properties of an Al-Cu-Mg-Sc alloy reinforced with in-situ TiB2 particulates. Mater Sci Eng A Struct Mater 788:139603. https://doi.org/10.1016/j.msea.2020.139603

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is financially supported by the National Natural Science Foundation of China [Nos. 51971137, 52071207] and Natural Science Foundation of Shanghai (China, Grant No. 22ZR1432800). The authors would like to acknowledge the facility support from Tianjin Qbeam-3d Technology Co. Ltd.

Author information

Authors and Affiliations

Authors

Contributions

KW done investigation, formal analysis, data curation, and writing—original draft preparation; SM done writing—reviewing & editing, data curation; XF performs validation; YL performed investigation; WK helped in resources, methodology; HW contributed to supervision; MW performed validation and data curation; JL performed investigation and methodology; ZC contributed to conceptualization, supervision, writing—review & and editing.

Corresponding authors

Correspondence to Siming Ma or Zhe Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

Not applicable.

Additional information

Handling Editor: Catalin Croitoru.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, K., Ma, S., Fang, X. et al. Microstructure and mechanical properties of an in-situ TiB2 particle reinforced AlSi10Mg composite additive manufactured by selective electron beam melting. J Mater Sci 58, 7915–7929 (2023). https://doi.org/10.1007/s10853-023-08516-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08516-1

Navigation