Skip to main content
Log in

Self-propagation Combustion Behavior with Varying Al/Ni Ratios in Compression-Bonded Ni-sputtered Al Foil Multilayers

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Compression-bonded Ni-sputtered Al foil multilayers with various atomic ratios of Al/Ni are fabricated with various bilayer thicknesses. The microstructures that are formed after the self-propagating combustion using laser ignition result in equilibrium phases in the Al/Ni binary system. Homogeneous intermetallic compounds for Al3Ni2 and AlNi are obtained for the first time in the micrometer-scale multilayers through controlling the Ni layer thickness. The onset temperatures of the multilayers are below 800 K (527 °C) for all multilayer samples. The maximum temperatures correspond to the liquidus temperatures of the intermetallic compounds. The self-propagating direction is divided into a transverse propagating direction and a gross propagating direction. The measured gross propagation velocities vary widely without exhibiting a clear trend. However, the transverse propagation velocity is dependent on the measured maximum temperatures, while the effects of the bilayer thickness are not discernible. The measured transverse propagation velocities are similar to the reported propagation velocities for sputtered multilayers with similar bilayer thicknesses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. E. M. Hunt, and M. L. Pantoya: J. Appl. Phys., 2005, vol. 98, pp. 034909.

    Article  Google Scholar 

  2. X. Qiu, R. Liu, S. Guo, J.H. Graeter, L.  Kecskes, and J. Wang: Metall. Mater. Trans. A, 2009, Vol. 40A, pp. 1541–46.

    Article  Google Scholar 

  3. J. Wang, E. Besnoin, A. Duckham, S. J. Spey, M. E. Reiss, O. M.  Knio, M. Powers, M.Whitener, and T. P.Weihs: Appl. Phys. Lett., 2003, vol. 83, pp. 3987–89.

    Article  Google Scholar 

  4. B. Yang, Z. Luo, N. Fan, and S. Ao.: Proc. of SPIE Fourth International Seminar on Modern Cutting and Measuring Engineering, J. Xin, L. Zhu, and Z. Wang, eds., International Society for Optics and Photonics, Beijing. May 23, 2011. vol. 7997, pp. 79970L

  5. I. Sraj, M. Vohra, L. Alawieh, T.P. Weihs, and O.M.  Knio: J. Nanomater., 2013, vol. 2013, pp. 13.

    Google Scholar 

  6. L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino: Acta Mater., 1999, vol. 47, pp. 1901–14.

    Article  Google Scholar 

  7. O. Politano, F. Baras, A.S. Mukasyan, S.G. Vadchenko, and A.S. Rogachev: Surf. Coat. Tech., 2013, vol. 215, pp. 485–92.

    Article  Google Scholar 

  8. Kim JS, LaGrange T, Reed BW, Knepper R, Weihs TP (2011) Acta Mater 59:3571–80

    Article  Google Scholar 

  9. J. C. Trenkle, L. J.  Koerner, M. W. Tate, Noël Walker, S. M. Gruner, T. P. Weihs, and T. C. Hufnagel: J. Appl. Phys., 2010, vol. 107, pp. 113511.

    Article  Google Scholar 

  10. S. Jayaraman, A.B. Mann, M. Reiss, T.P.Weihs, and O.M.  Knio: Combust. Flame, 2001, vol. 124, pp. 178–194.

    Article  Google Scholar 

  11. L. Alawieh, O.M. Knio, and T.P. Weihs: J. Appl. Phys., 2011, vol. 110, pp. 013509.

    Article  Google Scholar 

  12. A.S. Shteinberg, Y-C. Lin, S.F. Son, and A.S.Mukasyan: J. Phys. Chem. A., 2010, vol. 114, pp. 6111-16.

    Article  Google Scholar 

  13. M. Salloum, and O.M.  Knio: Combust. Flame, 2010, vol. 157, pp. 288–95.

    Article  Google Scholar 

  14. A. K. Stover, N. M. Krywopusk, G. M. Fritz, S. C. Barron, J. D. Gibbins, and T. P. Weihs: J. Mater. Sci., 2013, vol. 48, pp. 5917–29.

    Article  Google Scholar 

  15. J. P. McDonald, V. C. Hodges, E. D. Jones Jr., and D. P. Adams: Appl. Phys. Lett., 2009, vol. 94, pp. 034102.

    Article  Google Scholar 

  16. O.S. Rabinovich, P.S. Grinchuk, M. Andreev, and B.B.  Khina: Physica B, 2007, vol. 392, pp. 272–80.

    Article  Google Scholar 

  17. A. Makino: P. Combust. Inst., 2007, vol. 31, pp. 1813–20.

    Article  Google Scholar 

  18. S.W. Kuk, H.J. Ryu, and J. Yu: J. Alloys Compd., 2014, vol. 589, pp. 455–61.

    Article  Google Scholar 

  19. P. Zhu, J.C.M. Li, and C.T. Liu: Mater. Sci. Eng. A, 2002, vol. 329–331, pp. 57–68.

    Article  Google Scholar 

  20. H. Okamoto: J. Phase Equilib. Diffus., 2004, vol. 25, pp. 394.

    Article  Google Scholar 

  21. A. J. Gavens, D. Van Heerden, A. B. Mann, M. E. Reiss, and T. P. Weihs: J. Appl. Phys., 2000, vol. 87, pp. 1255–63.

    Article  Google Scholar 

  22. X. Qiu, J. Graeter, L.  Kecskes, and J. Wang: J. Mater. Res., 2008, vol. 23, pp. 367–75.

    Article  Google Scholar 

  23. R. Armstrong and M. Koszykowski: Combustion and Plasma Synthesis of High Temperature Materials, Z. Munir and J. Holt, eds., VCH Publishers, New York, 1990, pp. 88–99.

  24. Z.A. Munir: Metall. Trans. A, 1992, vol. 23A, pp. 7–13.

    Article  Google Scholar 

  25. K. Morsi: Mater. Sci. Eng. A, 2001, vol. 299, pp. 1–15.

    Article  Google Scholar 

  26. R. Knepper, M.R. Snyder, G. Fritz, K. Fisher, O.M. Knio, and T. P. Weihs: J. Appl. Phys., 2009, vol. 105, pp. 083504.

    Article  Google Scholar 

  27. T. S. Dyer, Z. A. Munir, and V. Ruth: Scripta Metall. Mater., 1994, vol. 30, pp. 1281–86.

    Article  Google Scholar 

  28. N. P. Novikov, I. P. Borovinskaya, and A. G. Merzhanov: Combust. Explo. Shock Waves, 1974, vol. 10, pp. 175–78.

    Article  Google Scholar 

  29. V. M. Maslov, I. P. Borovinskaya, and M.  K. Ziatdinov: Combust. Explo. Shock Waves, 1979, vol. 15, pp. 41–47.

    Article  Google Scholar 

  30. S. Gennari, U. A. Tamburini, F. Maglia, G. Spinolo, and Z. A. Munir: Acta Mater., 2006, vol. 54, pp. 2343–51.

    Article  Google Scholar 

  31. Merzhanov AG, Borovinskaya IP (2008) Int J SHS 17:242–65.

    Google Scholar 

  32. A. B. Mann, A. J. Gavens, M. E. Reiss, D. Van Heerden, G. Bao, and T. P. Weihs: J. Appl. Phys., 1997, vol. 82, pp. 1178-88.

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by grant No. EEWS-2014-N01140112 from Climate Change Research Hub Project of the  KAIST EEWS Research Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Yu.

Additional information

Manuscript submitted April 16, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuk, S.W., Ryu, H.J. & Yu, J. Self-propagation Combustion Behavior with Varying Al/Ni Ratios in Compression-Bonded Ni-sputtered Al Foil Multilayers. Metall Mater Trans A 45, 5691–5698 (2014). https://doi.org/10.1007/s11661-014-2485-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2485-9

Keywords

Navigation