Skip to main content
Log in

Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Linear friction welding allows solid-state joining of near-beta (β) titanium alloy Ti-5553 (Ti-5Al-5V-5Mo-3Cr). In the as-welded condition, the weld zone (WZ) exhibits β grain refinement and marked softening as compared with Ti-5553 in the solution heat treated and aged condition. The softening of the weldment is attributed to the depletion of the strengthening alpha (α) phase in the WZ and the adjacent thermo-mechanically affected zone (TMAZ). Specifically, in near-β titanium alloys, the strength of the material mainly depends on the shape, size, distribution, and fraction of the primary α and other decomposition products of the β phase. Hence, a combination of pre- and post-weld heat treatments were applied to determine the conditions that allow mitigating the α phase depletion in the WZ and TMAZ of the welds. The mechanical response of the welded samples to the heat treatments was determined by performing microhardness measurements and tensile testing at room temperature with an automated 3D deformation measurement system. It was found that though the joint efficiency in the as-welded condition was high (96 pct), strain localization and failure occurred in the TMAZ. The application of post-weld solution heat treatment with aging was effective in restoring α, increasing the joint efficiency (97 to 99 pct) and inducing strain localization and failure in the parent material region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Boyer RR, Briggs RD: J Mater Eng Perform 2005; 14: pp. 681-5.

    Article  Google Scholar 

  2. Jones NG, Dashwood RJ, Dye D, Jackson M: Mater Sci Eng 2008; A490: pp. 369-77.

    Article  Google Scholar 

  3. Clement N, Lenain A, Jacques PJ. JOM 2007; 59: pp. 50-3.

    Article  Google Scholar 

  4. Veeck S, Lee D, Boyer R, Briggs R. J Adv Mater 2005; 37: p. 40.

    Google Scholar 

  5. S. Nag, R. Banerjee, R. Srinivasan. J.Y. Hwang, M. Harper, and H.L. Fraser: Acta Mater., 2009; vol. 57, pp. 2136–47.

    Article  Google Scholar 

  6. B.A. Welk: M.Sc. Thesis, The Ohio State University, 2010.

  7. Fanning JC: J Mater Eng Perform 2005; 14: pp. 788-92.

    Article  Google Scholar 

  8. Dalgaard E, Wanjara P, Gholipour J, Cao X, Jonas JJ. Acta Mater 2012; 60: pp. 770-80.

    Article  Google Scholar 

  9. R. Panza-Giosa: Ph.D. Thesis, McMaster University, Canada, 2006.

  10. Donachie MJ. Titanium: A Technical Guide, second ed. Materials Park: ASM International; 1998.

    Google Scholar 

  11. W.A. Baeslack III, J.R. Davis, and C.E. Cross: in ASM Handbook on Welding, Brazing and Soldering, vol. 6, 10th ed., S.A. David and J.M. Vitek, eds., ASM International, Materials Park, OH, 1994.

  12. Shariff T, Cao X, Chromik RR, Baradari JG, Wanjara P, Cuddy J, Birur A. CMQ 2011; 50: pp. 263-72.

    Article  Google Scholar 

  13. Shariff T, Cao X, Chromik RR, Baradari JG, Wanjara P, Cuddy J, Birur A. J Mater Sci 2012; 47: pp. 866-75.

    Article  Google Scholar 

  14. Shariff T, Cao X, Chromik RR, Baradari JG, Wanjara P, Cuddy J, Birur A. Mater Sci Forum 2012; 706–9: pp. 2931-36.

    Article  Google Scholar 

  15. Mitchell R, Short AB, Pasang T, Littlefair G. Adv Mat Res 2011; 275: pp. 81-4.

    Article  Google Scholar 

  16. T. Shariff: M. Eng. Thesis, McGill University, Canada, 2010.

  17. H. Wilhelm, R. Furlan, and K.C. Moloney: in Titanium ‘95: Science and Technology, P.A. Blenkinsop , W.J. Evans, and H.M. Flower, eds., Proceedings of 8th World Conference on Titanium, Institute of Materials, London, 1996. pp. 620–27.

  18. Bhamji I, Preuss M, Threadgill PL, Addison AC. Mater Sci Technol 2011; 27: pp. 2-12.

    Article  Google Scholar 

  19. Frankel P, Preuss M, Steuwer A, Withers PJ, Bray S. Mater Sci Technol 2009; 25: pp. 640-50.

    Article  Google Scholar 

  20. Dalgaard E, Wanjara P, Gholipour J, Jonas JJ. Mater Sci Forum 2012; 706–9: pp. 211-6.

    Article  Google Scholar 

  21. Dalgaard E, Wanjara P, Gholipour J, Jonas JJ. CMQ 2012; 51: pp. 269-76.

    Article  Google Scholar 

  22. Nicholas ED, Thomas, WM. Int J Mater Prod Tec 1998; 13: pp. 45-55.

    Google Scholar 

  23. Vairis A, Frost M. Wear 1998; 217: pp.117-31.

    Article  Google Scholar 

  24. Vairis A, Frost M. Mater Sci Eng 1999; A271: pp. 477-84.

    Article  Google Scholar 

  25. Vairis A, Frost M. Mater Sci Eng 2000; A292: pp. 8-17.

    Article  Google Scholar 

  26. Wanjara P, Jahazi M. Metall Mater Trans 2005; 36A: pp. 2149-64.

    Article  Google Scholar 

  27. Romero J, Attallah MM, Preuss M, Karadge M, Bray SE. Acta Mater 2009; 57: pp. 5582-92.

    Article  Google Scholar 

  28. Karadge M, Preuss M, Lovell C, Withers PJ, Bray S. Mater Sci Eng 2007; A459: pp. 182-91.

    Article  Google Scholar 

  29. Li WY, Ma TJ, Zhang Y, Xu QZ, Li JL, Yang SQ. Adv Eng Mater 2008; 10: pp. 89-92.

    Article  Google Scholar 

  30. Dalgaard E, Coghe F, Rabet L, Jahazi M, Wanjara P, Jonas JJ. Adv Mat Res 2009; 89-91: pp. 124-9.

    Google Scholar 

  31. Li WY, Ma TJ, Li JL. Mater Des 2010; 31: pp. 1497-507.

    Article  Google Scholar 

  32. Ma T, Chen T, Li WY, Wang S, Yang S. Mater Charact 2011; 62: pp. 130-5.

    Article  Google Scholar 

  33. Nyakana S, Fanning JC, Boyer R. J Mater Eng Perform 2007; 14: pp. 799-811.

    Article  Google Scholar 

  34. E. Dalgaard: Ph.D. Thesis, McGill University, Canada, 2011.

  35. Jones NG, Dashwood RJ, Dye D, Jackson M. Metall Mater Trans 2009; 40A: pp. 1944-54.

    Article  Google Scholar 

  36. Furuhara T, Poorganji B, Abe H, Maki T. JOM 2007; 59: pp. 64-7.

    Article  Google Scholar 

  37. Reynolds A.P., Duvall F. Welding Research Supplement 1999; 78: pp. 355s-60s.

    Google Scholar 

  38. Boyer R, Welsch G, Collings EW. Materials Properties Handbook: Titanium Alloys, Materials Part: ASM International; 1994: p. 493.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful to M. Guerin and M. Banu for their technical assistance during this study. The authors are also grateful to R. Ivanov for his support in acquiring the SEM images of the fracture surfaces.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Priti Wanjara.

Additional information

Manuscript submitted March 5, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wanjara, P., Dalgaard, E., Gholipour, J. et al. Effect of Pre- and Post-weld Heat Treatments on Linear Friction Welded Ti-5553. Metall Mater Trans A 45, 5138–5157 (2014). https://doi.org/10.1007/s11661-014-2475-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2475-y

Keywords

Navigation