Skip to main content

Advertisement

Log in

Microstructure of Precipitation Hardenable Powder Metallurgical Ni Alloys Containing 35 to 45 pct Cr and 3.5 to 6 pct Nb

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ni-based alloys with high Cr contents are not only known for their excellent high temperature and hot corrosion resistance, but are also known for poor mechanical properties and difficult workability. Powder metallurgical (PM) manufacturing of alloys may overcome several of the shortcomings encountered in materials manufacturing involving solidification. In the present work, six PM Ni-based alloys containing 35 to 45 wt pct Cr and 3.5 to 6 wt pct Nb were produced and compacted via hot isostatic pressing. Samples were heat treated for up to 1656 hours at either 923 K or 973 K (650 °C or 700 °C), and the microstructures and mechanical properties were quantified and compared to thermodynamic calculations. For the majority of the investigated alloys, the high Cr and Nb contents caused development of primary populations of globular α-Cr and δ (Ni3Nb). Transmission electron microscopy of selected alloys confirmed the additional presence of metastable γ″ (Ni3Nb). A co-dependent growth morphology was found, where the preferred growth direction of γ″, the {001} planes of γ-Ni, caused precipitates of both α-Cr and δ to appear in the form of mutually perpendicular oriented disks or plates. Solution heat treatment at 1373 K (1100 °C) followed by aging at 973 K (700 °C) produced a significant strength increase for all alloys, and an aged yield strength of 990 MPa combined with an elongation of 21 pct is documented for Ni 40 wt pct Cr 3.5 wt pct Nb.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. R. A. Rapp: Corrosion Science, 2002, vol. 44, pp. 209-221.

    Article  Google Scholar 

  2. J. Stringer: Materials Science and Technology, 1987, vol. 3, pp. 482-493.

    Google Scholar 

  3. F. Pettit: Oxidation of Metals, 2011, vol. 76, pp. 1-21.

    Article  Google Scholar 

  4. H. Singh, D. Puri, S. Prakash: Reviews on Advanced Materials Science, 2007, vol. 16, pp. 27-50.

    Google Scholar 

  5. L. Zheng, C. Xiao, G. Zhang, B. Han and D. Tang: Journal of Alloys and Compounds, 2012, vol. 527, pp. 176-183.

    Article  Google Scholar 

  6. P. J. Ennis and P. J. Bridges: Journal of the Institute of Metals, 1972, vol. 100, pp. 346-352.

    Google Scholar 

  7. P. J. Parry and P. J. Bridges and B. Taylor: Journal of the Institute of Metals, 1969, vol. 97, pp. 373-381.

    Google Scholar 

  8. J. Dong, Z. Bi, N. Wang, X. Xie, and Z. Wang: Proc. Int. Sympos. Superalloys, ed. 1, Wiley, Pittsburgh, 2008, pp. 41–50.

  9. M. P. Brady, I. M. Anderson, M. L. Weaver, H. M. Meyer, L. R. Walker, M. K. Miller, D. J. Larson, I. G. Wright, V. K. Sikka, A. Rar, G. M. Pharr, J. R. Keiser and C. A. Walls: Materials Science and Engineering A, 2003, vol. A358, pp. 243-254.

    Article  Google Scholar 

  10. M. C. Gao, Ö. N. Dogan, P. King, A. D. Rollett and M. Widom: JOM, 2008, vol. 60, pp. 61-65.

    Article  Google Scholar 

  11. H. V. Atkinson and S. Davies: Metallurgical and Materials Transactions A, 2000, vol. 31A, pp. 2981-3000.

    Article  Google Scholar 

  12. H.L. Eiselstein and D.J. Tillack: Proc. Int. Sympos. Superalloys 718, 625 and Var. Deriv, ed. 1, Wiley, Pittsburgh, 1991, pp. 1–14.

  13. A. Devaux, L. Nazé, R. Molins, A. Pineau, A. Organista, J. Y. Guédou, J. F. Uginet and P. Héritier: Materials Science and Engineering A, 2008, vol. A486, pp. 117-122.

    Article  Google Scholar 

  14. S. Mahadevan, S. Nalawade, J. B. Singh, and A. Verma: Proc. 7th Int. Sympos. Superalloy 718 Deriv, ed. 1, Wiley, Pittsburgh, 2010, pp. 737–50.

  15. N. Saunders and A. P. Miodownik: CALPHAD (Calculation of Phase Diagrams): A Comprehensive Guide, ed. 1, Oxford, Pergamon, 1998.

    Google Scholar 

  16. J. O. Andersson, T. Helander, L. Höglund, P. Shi and B. Sundman: Calphad, 2002, vol. 26, no. 2, pp. 273-312.

    Article  Google Scholar 

  17. D. Srinivasan: Materials Science and Engineering A, 2004, vol. A364, pp. 27-34.

    Article  Google Scholar 

  18. J. F. Radavich: Proceedings of the 6th International Symposium on Superalloys 718, 625, 706 and Various Derivatives, ed. 1, Wiley, Pittsburgh, 2010, pp. 409–15.

  19. Z. Bi, J. Dong, M. Zhang, L. Zheng and X. Xie: International Journal of Minerals, Metallurgy and Materials, 2010, vol. 17, no. 3, pp. 312-317.

    Article  Google Scholar 

  20. B. Sonderegger: Ultramicroscopy, 2006, vol. 106, pp. 941-950.

    Article  Google Scholar 

  21. R.F. Egerton: Reports on Progress in Physics, 2009, vol. 72, art. no. 016502.

  22. M. Kong, R. N. Bhattacharya, C. James and A. Basu: Geological Society of America Bulletin, 2005, vol. 117, no. 1, pp. 244-249.

    Article  Google Scholar 

  23. D. Drouin, A. R. Couture, D. Joly, X. Tastet, V. Aimez and R. Gauvin: Scanning, 2007, vol. 29, pp. 92-101.

    Article  Google Scholar 

  24. Thermo-Calc Software TCNI5 Ni-Based Superalloys Database version 5.1, http://www.thermocalc.com.

  25. N. Saunders: Proc. Int. Sympos. Superalloys, ed. 1, Wiley, Pittsburgh, 1996, pp. 101–10.

  26. J. He, S. Fukuyama and K. Yokogawa: Journal of Materials Science and Technology, 1994, vol. 10, pp. 293-303.

    Google Scholar 

  27. T. Furuhara, K. Wada and T. Maki: Metallurgical and Materials Transactions A, 1995, vol. 26A, pp. 1971-1978.

    Article  Google Scholar 

  28. G. A. Rao, M. Kumar, M. Srinivas and D. S. Sarma: Materials Science and Engineering A, 2003, vol. A355, pp. 114-125.

    Article  Google Scholar 

  29. B.A. Baker, G.D. Smith, V.W. Hartmann, L.E. Shoemaker, and S.A. McCoy: Corrosion 2002, NACE International, Houston, TX, Paper No. 02394, 2002.

  30. Davis, J. R., Mills, K. M., & Lampman, S. R. (1990) Metals Handbook, vol. 1. Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th edition, ASM International, Materials Park, OH, pp. 958–61.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Flemming Bjerg Grumsen at the Technical University of Denmark, for production of TEM lamellae and TEM operation. Funding for this project was provided by MAN Diesel & Turbo SE and the Danish Ministry of Science, Innovation and Higher Education.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uffe D. Bihlet.

Additional information

Manuscript submitted June 20, 2013.

Appendix

Appendix

See appendix Tables VI and VII

Table VI Volume Percentages (vol pct), Volumetric Particle Number Densities (Nv), and Corrected Average Radii of α-Cr precipitates (r 3D) One Outlier has been Removed from Values Marked with Asterisk due to Microscope-Related Brightness/Contrast Artifacts, as Described in the Experimental Section
Table VII Volume Percentages (Volume Percent), Volumetric Particle Number Densities (Nv), and Corrected Average Radii of δ Precipitates (r 3D)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bihlet, U.D., Dahl, K.V. & Somers, M.A.J. Microstructure of Precipitation Hardenable Powder Metallurgical Ni Alloys Containing 35 to 45 pct Cr and 3.5 to 6 pct Nb. Metall Mater Trans A 45, 4796–4809 (2014). https://doi.org/10.1007/s11661-014-2469-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2469-9

Keywords

Navigation