Skip to main content
Log in

Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Two Ni-based superalloys, columnar grained Alloy 247 and single-crystal PWA1483, are joined by transient liquid phase bonding using an amorphous brazing foil containing boron as a melting point depressant. At lower brazing temperatures, two different morphologies of borides develop in both base materials: plate-like and globular ones. Their ratio to each other is temperature dependent. With very high brazing temperatures, the deleterious boride formation in Alloy 247 can be totally avoided, probably because the three-phase-field moves to higher alloying element contents. For the superalloy PWA1483, the formation of borides cannot be completely avoided at high brazing temperatures as incipient melting occurs. During subsequent solidification of these areas, Chinese-script-like borides precipitate. The mechanical properties (tensile tests at room and elevated temperatures and short-term creep rupture tests at elevated temperatures) for brazed samples without boride precipitation are very promising. Tensile strengths and creep times to 1 pct strain are comparable, respectively, higher than the ones of the weaker parent material for all tested temperatures and creep conditions (from 90 to 100 pct rsp. 175 to 250 pct).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. R.C. Reed, The Superalloys: Fundamentals and Applications, 1st ed., Cambridge University Press, New York, 2006.

    Book  Google Scholar 

  2. T. M. Pollock, S. Tin: J. Propuls. Power, 2006, vol. 22, pp. 361-73.

    Article  Google Scholar 

  3. K. Nishimoto, K. Saida, D. Kim, Y. Nakao: ISIJ Int., 1995, vol. 35, pp. 1298-1306.

    Article  Google Scholar 

  4. R. Zhongci, W. Shuncai, Z. Yunrong: Scripta Mater., 1996, vol. 34, pp. 163-68.

    Article  Google Scholar 

  5. Y. Zheng, L. Zhao, K. Tangri: J. Mater. Sci., 1993, vol. 28, pp. 823-29.

    Article  Google Scholar 

  6. A. Schnell: Dissertation, EPFL, Faculte sciences et techniques de l’ingenieur, 2004.

  7. D. Kim, K. NIshimoto: Met. Mater. Int., 2002, vol. 8, pp. 403-10.

    Article  Google Scholar 

  8. M.K. Dinkel, P. Heinz, F. Pyczak, A. Volek, M. Ott, E. Affeldt, A. Vossberg, M. Göken, and R.F. Singer: International Symposium on Superalloys, R.C. Reed, Seven Springs, 2008, pp. 211–20.

  9. D. S. Duvall, W. A. Owczarski, D. F. Paulonis: Weld. J., 1974, vol. 53, no. 4, pp. 203–14.

    Google Scholar 

  10. R. Aluru, S. V. Chitti, N. Sofyan, R. D. Love, J. W. Fergus, W. F. Gale: Mater. Sci. Technol., 2008, vol. 24, no. 5, pp. 517-28.

    Article  Google Scholar 

  11. J. D. Liu, T. Jin, Z. H. Wang, X. F. Sun, H. R. Guan, Z. Q. Hu: Mater. Sci. Forum, 2007, vol. 546–549, pp. 1245–48.

    Article  Google Scholar 

  12. M. Pouranvari, A. Ekrami, A. H. Kokabi: J. Alloys Compd., 2008, vol. 461, pp. 341-47.

    Article  Google Scholar 

  13. T. Li, Q. Y. Wang, A. Q. Wang, Z. X. Wen, Z. F. Yue: Key Eng. Mater., 2005, vol. 297–300, pp. 1489-94.

    Article  Google Scholar 

  14. X. Wu, R. S. Chandel, H. Li: J. Mater. Sci., 2001, vol. 36, pp. 1539-46.

    Article  Google Scholar 

  15. M. Pouranvari, A. Ekrami, A. H. Kokabi: Mater. Sci. Eng. A, 2013, vol. 568, pp. 76-82.

    Article  Google Scholar 

  16. M. Pouranvari, A. Ekrami, A. H. Kokabi : Mater. Des., 2013, vol. 50, pp. 694-701.

    Article  Google Scholar 

  17. M. Mosallaee, A. Ekrami, K. Ohsaha, K. Matsuura: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 2389-2402.

    Article  Google Scholar 

  18. M. Pouranvari, A. Ekrami, A. H. Kokabi : Mater. Sci. Eng. A, 2008, vol. 490, pp. 229-34.

    Article  Google Scholar 

  19. M. Pouranvari: World Appl. Sci. J., 2011, vol. 15, pp. 1507-11.

    Google Scholar 

  20. J. D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Mater. Charact., 2008, vol. 59, pp. 68-73.

    Article  Google Scholar 

  21. J.D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, and Z. Hu: International Symposium on Superalloys, R.C. Reed, ed., Seven Springs, 2008, pp. 295–99.

  22. J. D. Liu, T. Jin, W. Lin, X. Sun, H. Guan, Z. Hu: J. Alloys Compd., 2008, vol. 457, pp. 185-90.

    Article  Google Scholar 

  23. J. Cao, Y. F. Wang, X. G. Song, C. Li, J. C. Feng: Mater. Sci. Eng. A, 2014, vol. 590, pp. 1-6.

    Article  Google Scholar 

  24. D. Shi, C. Dong, X. Yang, L. Zhang, J. Hou, Y. Liu: Mater. Sci. Eng. A, 2012, vol. 545, pp. 162-67.

    Article  Google Scholar 

  25. X. Yang, C. Dong, D. Shi, L. Zhang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7005-11.

    Article  Google Scholar 

  26. R. Aluru, N.I. Sofyan, and W.F. Gale: International Symposium of Research Students, Chennai, India, 2004, pp. 1–9.

  27. J. Liu, J. Cao, X. Lin, X. Song, J. Feng, Mater. Des., 2013, vol. 49, pp. 622-26.

    Article  Google Scholar 

  28. J.-D. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Sci. Technol. Weld., 2010, vol. 15, pp. 194-98.

    Article  Google Scholar 

  29. W. F. Gale, Y. Guan: J. Mater. Sci., 1999, vol. 34, pp. 1061-71.

    Article  Google Scholar 

  30. Y. Nakao, K. Nishimoto, K. Shinozaki, and C.Y. Kang: Adv. Join. Technol., 1990, pp. 129–44.

  31. R. K. Saha, T. I. Khan: J. Mater. Sci., 2007, vol. 42, pp. 9187-93.

    Article  Google Scholar 

  32. D. Kim, C. Kang, W. Lee: Met. Miner., 1999, vol. 5, pp. 477-84.

    Google Scholar 

  33. A. Ghoneim, O. A. Ojo: Phil. Mag., 2011, vol. 91, pp. 3649-66.

    Article  Google Scholar 

  34. S. Steuer, R. F. Singer, Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2226-32.

    Article  Google Scholar 

  35. J. Liu, T. Jin, N. Zhao, Z. Wang, X. Sun, H. Guan, Z. Hu: Mater. Charact., 2011, vol. 62, pp. 545-53.

    Article  Google Scholar 

  36. O. A. Idowu, O. A. Ojo, M. C. Chaturvedi: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2787-96.

    Article  Google Scholar 

  37. C. E. Campbell, W. J. Boettinger: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 2835-3847.

    Article  Google Scholar 

  38. S. Steuer, S. Piegert, M. Frommherz, R. F. Singer, A. Scholz: Adv. Mater. Res., 2011, vol. 278, pp. 454-59.

    Article  Google Scholar 

  39. M. Dinkel: Dissertation, Universität Erlangen-Nürnberg, 2010.

Download references

Acknowledgments

We would like to thank the DFG research group (Graduiertenkolleg) 1229 “Stable and metastable multiphase systems for high temperature applications” and DFG collaborative research center SFB/Transregio 103 “Superalloy single crystals—From atoms to turbine blades” for financial support of part of this work and the Institut für Werkstoffkunde, Technische Universität Darmstadt for executing the mechanical tests of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Steuer.

Additional information

Manuscript submitted November 15, 2013.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steuer, S., Singer, R.F. Suppression of Boride Formation in Transient Liquid Phase Bonding of Pairings of Parent Superalloy Materials with Different Compositions and Grain Structures and Resulting Mechanical Properties. Metall Mater Trans A 45, 3545–3553 (2014). https://doi.org/10.1007/s11661-014-2304-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2304-3

Keywords

Navigation