Skip to main content
Log in

Initial Boron Uptake and Kinetics of Transient Liquid Phase Bonding in Ni-Based Superalloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work details a quantitative investigation into the braze gap width dependence on the initial boron uptake (IBU) phenomena—an event which manifests during the initial stages of brazing of boron-containing filler metals. This was accomplished using in situ cyclic DSC of both full- and half-joint TLPB couples, i.e., IN625/xBNi2/IN625 and IN625/xBNi2. All joints demonstrated a linear relationship between the isothermally solidified gap width with the square root of time which were in excellent agreement with conventional metallographic analysis methods. A conceptual model designed to quantify both the extent of isothermal solidification and IBU during TLPB in terms of the redistribution of boron as borides was implemented. The investigation demonstrated excellent agreement with microstructural and DSC results further supporting the crucial role boride formation has on the kinetics of TLPB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. W.D. Macdonald and T.W. Eagar, Annu. Rev. Mater. Sci., 1992, vol. 22, pp. 23–46.

    Article  CAS  Google Scholar 

  2. 2.D.S. Duvall, W.A. Owczarski, D.F. Paulonis, Welding J., 1974, vol. 53(4), pp. 203-214.

    CAS  Google Scholar 

  3. 3.I. Tuah-Poku, M. Dollar, T.B. Massalski. Metall. Trans. A., 1988, vol. 19A(3), pp. 675-686.

    Article  CAS  Google Scholar 

  4. 4.H. Nakagawa, C.H. Lee, T.H. North, Metall. Trans. A., 1991, vol. 22A, pp. 543-555.

    Article  CAS  Google Scholar 

  5. 5.G. O. Cook, C. D. Sorensen, J. Mater. Sci., 2011, vol. 46, pp. 5305-5323.

    Article  CAS  Google Scholar 

  6. 6.J. Ruiz-Vargas, N. Siredey-Schwaller, P. Bocher, A Hazotte, J. Mater. Proc. Tech., 2013, vol. 213, pp. 2074-80.

    Article  CAS  Google Scholar 

  7. 7.M. Pouranvari, A. Ekrami, A.H. Kobabi, Welding J., 2014, vol. 93(1), pp, 60s-68s,

    Google Scholar 

  8. 8.M. Pouranvari, A. Ekrami, A.H. Kobabi, Can. Met. Q., 2014, vol. 53(1), pp. 38-46

    Article  CAS  Google Scholar 

  9. 9.K. Tokoro, N.P. Wikstrom, O.A. Ojo, M.C. Chaturvedi, Mat. Sci. Eng. A., 2008, vol. 477A, pp. 311-318.

    Article  Google Scholar 

  10. 10.S. Omori, Y. Hashimoto, K. Shoji, K. Hidaka, Y. Kohira, Funtai Oyobi, Funmatsuyakin, 1972, vol. 18, pp. 316.

    Google Scholar 

  11. M.A. Arafin, M. Medraj, D.P. Turner, P. Bocher, Mater. Sci. Eng. A, 2007, vol. 447, pp. 125-133.

    Article  Google Scholar 

  12. 12.S.K. Tung, L.C. Lim, M.O. Lai, Scripta Mater., 1996, vol. 34, pp. 763-69.

    Article  CAS  Google Scholar 

  13. 13.K.D. Partz, E. Lugscheider, Welding Journal, 1983, vol. 62, pp. S160-S164.

    Google Scholar 

  14. 14.A. Sakamoto, C. Fujimara, T. Hattori, S. Sakai, Weld. J., 1989, vol. 68, pp. 63-67

    CAS  Google Scholar 

  15. Y. Zhou, W.F. Gale, TH North, Int. Mater. Rev., 1995, vol. 40, pp. 181–196.

    Article  CAS  Google Scholar 

  16. M. Pouranvari, A. Ekrami, A. Kokabi, J. Sci. Technol. Weld. Join., 2018, vol. 23, pp. 13-18.

    Article  CAS  Google Scholar 

  17. 17.S.F. Corbin, S. Winkler, D.M. Turriff, M. Kozdras, Metall. Mater. Trans. A, 2014, vol. 45A, pp. 3907-3915.

    Article  Google Scholar 

  18. 18.D.C. Murray, S.F. Corbin, J. Mater. Proc. Tech., 2017, vol. 248, pp.92-102.

    Article  Google Scholar 

  19. 19.M.L. Kuntz, Y. Zhou, S.F. Corbin, Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2493-2504.

    Article  CAS  Google Scholar 

  20. 20.M.L. Kuntz, S.F. Corbin, Y. Zhou, Acta Mater., 2005, vol. 53, pp. 3071-82.

    Article  CAS  Google Scholar 

  21. 21.E. Moreau and S.F Corbin, Metall. Mater. Trans. A, 2019, vol. 50A, pp. 5678-5688

    Article  Google Scholar 

  22. 22.B. Zhang, G. Sheng, Y. Jiao, Z. Gao, X. Gong, H. Fan, J. Zhong, J. Alloys Compds., 2017, vol. 695, pp. 3202-3210.

    Article  CAS  Google Scholar 

  23. 23.K. Bai, F.L. Ng, T.L. Tan, T.Li, D. Pan, J. Alloys Compds., 2017, vol. 699, pp. 1084-1094.

    Article  CAS  Google Scholar 

  24. J. Berlin, Imaging and Microscopy (EMS), 2011, vol. 13, pp. 19-21.

    Google Scholar 

  25. 25.A. G. Kvashnin, A. R. Oganov, A. I. Samtsevich, Z. Allahyari, J. Phys. Chem. Lett., 2017, vol. 8, pp. 755-764

    Article  CAS  Google Scholar 

  26. A. Schnell, A. Stankowski, E. deMarcos, Proc. GT2006 ASME Turbo 2006: Power for Land, Sea, and Air. 2006, pp. 949–61.

Download references

Acknowledgments

The authors would like to thank the Natural Science and Engineering Research Council of Canada (NSERC) and Pratt and Whitney Canada for their financial support of this research. Also, thanks to Alain Bouthillier, Daniel Turner, and Francesco D’Angelo of Pratt and Whitney Canada for their contributions and guidance in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. F. Corbin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted October 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moreau, E.D., Corbin, S.F. Initial Boron Uptake and Kinetics of Transient Liquid Phase Bonding in Ni-Based Superalloys. Metall Mater Trans A 51, 2882–2892 (2020). https://doi.org/10.1007/s11661-020-05724-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-020-05724-1

Navigation