Skip to main content
Log in

A Study of Pb-Doping Effect on Structural, Optical, and Morphological Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In our study, undoped and lead (Pb)-doped ZnO thin films were deposited by sol–gel spin-coating technique and the structural, morphological, and optical properties of the films were investigated as a function of Pb doping which was changed from 0 to 4 at. pct with 1 at. pct step. The XRD results exhibited that the films had a hexagonal wurtzite structure with (002) preferential orientation in all dopant ratios. The grain size values of Pb-doped films were lower than that of undoped ZnO, but the increase in strain and dislocation density values were observed with Pb doping. Detailed optical analysis showed that the average transmittance of all films varied between about 90 and 99 pct and the absorption edge of undoped ZnO film shifted from longer wavelength to short wavelengths (blue shift) with Pb doping. The optical band gap and Urbach energy values of undoped ZnO increased from 3.283 eV and 63 meV to 3.331 eV and 88 meV with increasing Pb doping ratio. But steepness parameter values showed reversely variation with increasing Pb doping. The AFM images expressed that the films had homogenous nanoparticle distribution on the surface and particle size of ZnO decreased with Pb doping ratio. These results suggested that undoped and Pb-doped ZnO thin films could be used in many technological areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doğan, V. Avrutin, S.-J. Cho, and H. Morkoç: J. Appl. Phys., 2005, vol. 98, pp. 041301.

    Article  Google Scholar 

  2. A. Maldonado, M. de la L. Olvera, S.T. Guerra, R. Asomoza: Sol. Energy Mater. Sol. Cells, 2004, vol. 82, pp. 75-84.

    Article  Google Scholar 

  3. [3] B.N. Pawar, D.-H. Ham, R.S. Mane, T. Ganesh, B.-W. Cho, S.-H. Han: Appl. Surf. Sci., 2008, vol. 254, pp. 6294-6297.

    Article  Google Scholar 

  4. H.S. Yoon, K.S. Lee, T.S. Lee, B. Cheong, D.K. Choi, D.H. Kim, W.M. Kim: Sol. Energy Mater. Sol. Cells, 2008, vol. 92, pp. 1366-1372.

    Article  Google Scholar 

  5. R.R. Biswal, S. Velumani, B.J. Babu, A. Maldonado, S. Tirado-Guerra, L. Castañeda, M. de la L. Olvera: Mater. Sci. Eng. B, 2010, vol. 174, pp. 46-49.

    Article  Google Scholar 

  6. K.J. Chen, F.Y. Hung, S.J. Chang, Z.S. Hu: Appl. Surf. Sci., 2009, vol. 255, pp. 6308-6312.

    Article  Google Scholar 

  7. C. Huang, M. Wang, Z. Deng, Y. Cao, Q. Liu, Z. Huang, Y. Liu, W. Guo, Q. Huang: J Mater. Sci: Mater. Electron, 2010, vol. 21, pp. 1221-1227.

    Article  Google Scholar 

  8. C. Huang, M. Wang, Q. Liu, Y. Cao, Z. Deng, Z. Huang, Y. Liu, Q. Huang and W. Guo, Semicond. Sci. Technol., 2009, vol. 24, pp. 095019, 6 pp.

    Article  Google Scholar 

  9. M. Miki-Yoshida, F. Paraguay-Delgado, W. Estrada-López, E. Andrade: Thin Solid Films, 2000, vol. 376, pp. 99-109.

    Article  Google Scholar 

  10. M. Caglar, Y. Caglar and S. Ilican: Phys. Status Solidi C, 2007, vol. 4, pp. 1337-1340.

    Article  Google Scholar 

  11. H.Y. Xu, Y.C. Liu, R. Mu, C.L. Shao, Y.M. Lu, D.Z. Shen and X.W. Fan: App. Phys. Lett., 2005, vol. 86, pp. 123107.

    Article  Google Scholar 

  12. P.M.R. Kumar, C.S. Kartha, K.P. Vijayakumar, T. Abe, Y. Kashiwaba, F. Singh and D. K. Avasthi: Semicond. Sci. Technol., 2005, vol. 20, pp. 120-126.

    Article  Google Scholar 

  13. B. Kotlyarchuk, V. Savchuk and M. Oszwaldowski: Cryst. Res. Technol., 2005, vol. 40 pp. 1118-1123.

    Article  Google Scholar 

  14. G. Machado, D.N. Guerra, D. Leinen, J.R. Ramos-Barrado, R.E. Marotti, E.A. Dalchiele: Thin Solid Films, 2005, vol. 490, pp. 124-131.

    Article  Google Scholar 

  15. M. Girtan, M. Socol, B. Pattier, M. Sylla, A. Stanculescu: Thin Solid Films, 2010, vol. 519, pp. 573-577.

    Article  Google Scholar 

  16. E. J. Luna-Arredondo, A. Maldonado, R. Asomoza, D. R. Acosta, M. A. Melàndez-Lira, M. de la L. Olvera: Thin Solid Films, 2005, vol. 490, pp. 132-136.

    Article  Google Scholar 

  17. S. Ilican, Y. Caglar, M. Caglar, F. Yakuphanoglu: Appl. Surf. Sci., 2008, vol. 255, pp. 2353-2359.

    Article  Google Scholar 

  18. F.E. Ghodsi and H. Absalan: Acta Phys. Polonica A, 2010, vol. 118, no. 4, pp 659-664.

    Google Scholar 

  19. P. Sagar, M. Kumar, and R. M. Mehra: Mater. Sci.-Poland, 2005, vol. 23, no. 3, pp. 685–96.

    Google Scholar 

  20. A. Maldonado, S. Tirado-Guerra, J.M. Cázares, M. de la L. Olvera: Thin Solid Films, 2010, vol. 518, pp. 1815-1820.

    Article  Google Scholar 

  21. S.M. Attia, J. Wang, G. Wu, J. Shen and J. Ma: J. Mater. Sci. Technol., 2002, vol. 18, no. 3, pp. 211-217.

    Google Scholar 

  22. E.F. Keskenler, G.Turgut, and S. Doğan: Superlattices and Microstructures, 2012, vol. 52, pp. 107–15.

    Article  Google Scholar 

  23. R. Yousefi, F. Jamali-Sheini, A. Sa’aedi, A.K. Zak, M. Cheraghizade, S. Pilban-Jahromi, N.M. Huang: Ceram. Int., 2013, vol. 39, pp. 9115-9119.

    Article  Google Scholar 

  24. N.N. Greenwood and A. Earnshaw: Chemistry of the Elements, 2nd ed., Reed Educational and Professional Publishing, Oxford, 1997, p. 1341.

    Google Scholar 

  25. D. Chu, Y.-P. Zeng, D. Jiang: Mater. Lett., 2006, vol. 60, pp. 2783-2785.

    Article  Google Scholar 

  26. M. Ahmad, C. Pan, W. Yan, J. Zhu: Mater. Sci. Eng. B, 2010, vol. 174, pp. 55-58.

    Article  Google Scholar 

  27. [27] S.-M. Zhou, X.-H. Zhang, X.-M. Meng, S.-K. Wu, S.-T. Lee: Phys. Status Solidi A, 2005, vol. 202, pp. 405-410.

    Article  Google Scholar 

  28. H. Sato, T. Minami, S. Takata: J. Vac. Sci. Technol. A, 1993, vol. 11, pp. 2975-2979.

    Article  Google Scholar 

  29. M. Ahmad, C. Pan, J. Zhao, J. Zhu: J. Nanosci. Nanotech., 2011, vol. 11, pp. 1950-1957.

    Article  Google Scholar 

  30. R.J. Mendelsberg, J.V. Kennedy, S.M. Durbin, R.J. Reeves: J. Vac. Sci. Technol. B, 2009, vol. 27, pp. 1698-1704.

    Article  Google Scholar 

  31. X.B. Li, S.Y. Ma, F.M. Li, F.C. Yang, J. Liu, X.L. Zhang, Q. Zhao, X.H. Yang, C.Y. Wang, J. Zhu, C.T. Zhu, X. Wang: Appl. Surf. Sci., 2013, vol. 270, pp. 467-472.

    Article  Google Scholar 

  32. H.S. Bhatti, D. Kumar, K. Singh, P. Sharma, A. Gupta and R. Sharma: Asian J. Chem., 2006, vol. 18, pp. 3301-3305.

    Google Scholar 

  33. L. Dong, Y. Liu, Y. Zhuo, Y. Chu, Y. Wang: J. Alloy. Compd., 2011, vol. 509, pp. 2021-2030.

    Article  Google Scholar 

  34. I.I. Valan, V. Gokulakrishnan, A. Stephen, and K. Ramamurthi: Solid State Physics, Proceedings of the 57 th DAE Solid State Physics Symposium, vol. 1512, American Institute of Physics, Melville, 2013, pp. 662–63.

  35. K. Vanheusden, W.L. Warren, J.A. Voigt, C.H. Seager and D.R. Tallant: Appl. Phys. Lett., 1995, vol. 67, no. 9, pp. 1280-1282.

    Article  Google Scholar 

  36. G.H. Waller and X.-W. Du: Semicond. Sci. Technol., 2011, vol. 26, pp. 075001, 7 pp.

    Article  Google Scholar 

  37. P. Ramu, P.M. Anbarasan, R. Ramesh, S. Ponnusamy, C. Muthamizhchelvan: Mater. Lett., 2013, vol. 106, pp. 59-62.

    Article  Google Scholar 

  38. D. Chu, Y. Zeng, D. Jiang: Mater. Res. Bull., 2007, vol. 42, pp. 814-819.

    Article  Google Scholar 

  39. I.I. Valan, S. Raja, K. Ramamurthi, V. Narayanan and A. Stephen: Chem. Sci. Trans., 2013, vol. 2(S1), pp. 276-280.

    Google Scholar 

  40. C. Ge, C. Xie, M. Hu, Y. Gui, Z. Bai, D. Zeng: Mater. Sci. Eng. B, 2007, vol. 141, pp. 43-48.

    Article  Google Scholar 

  41. R.J.D. Tilley: Crystals and Crystal Structures, 1st ed., p. 270, Wiley, London, 2006.

    Google Scholar 

  42. E.F. Keskenler, S. Doğan, G. Turgut, B. Gürbulak: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 5088-5095.

    Article  Google Scholar 

  43. J. Ouerfelli, S.O. Djobo, J.C. Bernède, L. Cattin, M. Morsli, Y. Berredjem: Mater. Chem. Phys., 2008, vol. 112, pp. 198-201.

    Article  Google Scholar 

  44. G. Turgut, E.F. Keskenler: J. Mater. Sci: Mater. Electron, 2014, vol. 25, pp. 273-285.

    Article  Google Scholar 

  45. G. Turgut, E.F. Keskenler, S. Aydın, M. Yılmaz, S. Doğan, and B. Düzgün: Phys. Scr., 2013, vol. 87, 035602.

    Article  Google Scholar 

  46. D. Raoufi, T. Raoufi: Appl. Surf. Sci., 2009, vol. 255, pp. 5812-5817.

    Article  Google Scholar 

  47. S. Benramachel, B. Benhaoua, H. Bentrah: J. Nanostruc. in Chem., 2013, vol. 3, 7p.

    Article  Google Scholar 

  48. A. Ismail, M.J. Abdullah: J. King Saud Univ. Sci., 2013, vol. 25, pp. 209–15.

    Article  Google Scholar 

  49. K. Ravichandran, G. Muruganantham, B. Sakthivel: Physica B, 2009, vol. 404, pp. 4299-4302.

    Article  Google Scholar 

  50. A. Chen, H. Long, X. Li, Y. Li, G. Yang, P. Lu: Vacuum, 2009, vol. 83, pp. 927-930.

    Article  Google Scholar 

  51. J. Tauc, R. Grigorovici, A. Vancu: Phys. Status Solidi B, 1966, vol. 15, pp. 627-637.

    Article  Google Scholar 

  52. M. Ajili, M. Castagné, N.K. Turki: Superlattices and Microstructures, 2013, vol. 53, pp. 213-222.

    Article  Google Scholar 

  53. M. Snure, A. Tiwari: J. Appl. Phys., 2008, vol. 104, pp. 073707.

    Article  Google Scholar 

  54. V.S. Santhosh, K.R. Babu, M. Deepa: J. Mater. Sci: Mater. Electron, 2014, vol. 25, pp. 224-232.

    Article  Google Scholar 

  55. G. Tang, H. Liu, and W. Zhang: Adv. Mater. Sci. Eng., 2013, DOI:10.1155/2013/348601.

  56. A. Mhamdi, B. Ouni, A. Amlouk, K. Boubaker, M. Amlouk: J. Alloy. Compd., 2014, vol. 582, pp. 810-822.

    Article  Google Scholar 

  57. R. Krithiga, S. Sankar, G. Subhashree: J. Mater. Sci: Mater. Electron, 2014, vol. 25, pp.103-110.

    Article  Google Scholar 

  58. Y. Ammaih, A. Lfakir, B. Hartiti, A. Ridah, P. Thevenin, M. Siadat: Opt. Quant. Electron, 2014, vol. 46, pp. 229-234.

    Article  Google Scholar 

  59. M. Jaros: Rep. Prog. Phys., 1985, vol. 48, pp. 1091-1154.

    Article  Google Scholar 

  60. L.B. Freund, S. Suresh: Thin film materials: stress, defect formation and surface evolution, Cambridge University Press, Cambridge, 2003, p. 192.

    Google Scholar 

  61. Y.H. Lee, W.J. Lee, Y.S. Kwon, G.Y. Yeom, J.K. Yoon: Thin Solid Films, 1999, vol. 341, pp. 172-175.

    Article  Google Scholar 

  62. R. Swapna, M. Ashok, G. Muralidharan, M.C.S. Kumar: J. Anal. Appl. Pyrolysis, 2013, vol. 102, pp. 68-75.

    Article  Google Scholar 

  63. R.C. Rai: J. Appl. Phys., 2013, vol. 113, pp. 153508.

    Article  Google Scholar 

  64. F. Urbach: Phys. Rev., 1953, vol. 92, pp. 1324.

    Article  Google Scholar 

  65. E.A. Meulenkamp: J. Phys. Chem. B, 1999, vol. 103, 7831-7838.

    Article  Google Scholar 

  66. M. Kranjčec, I.P. Studenyak, M.V. Kurik: J. Non-Cryst. Solids, 2009, vol. 355, pp. 54-57.

    Article  Google Scholar 

  67. G.D. Cody, T. Tiedje, B. Abeles, B. Brooks and Y. Goldstein: Phys. Rev. Lett., 1981, vol. 47, pp.1480-1483.

    Article  Google Scholar 

  68. S. John, C. Soukoulis, M.H. Cohen, E.N. Economou: Phys. Rev. Lett., 1986, vol. 57, pp. 1777-1780.

    Article  Google Scholar 

  69. H.W. Martienssen: J. Phys. Chem. Solids, 1957, vol. 2, pp. 257.

    Article  Google Scholar 

  70. Y. Caglar, S. Ilican, M. Caglar, F. Yakuphanoglu: J. Sol-Gel Sci. Technol., 2010, vol. 53, pp. 372-377.

    Article  Google Scholar 

  71. S.K. O’Leary, S. Zukotynski, J.M. Perz: J. Non-Cryst. Solids, 1997, vol. 210, pp. 249-253.

    Article  Google Scholar 

  72. X. Zhang, S. Ma, F. Li, F. Yang, J. Liu, Q. Zhao: J. Alloy. Compd., 2013, vol. 574, pp. 149-154.

    Article  Google Scholar 

  73. B. Demirselcuk, V. Bilgin: App. Surf. Sci., 2013, vol. 273, pp. 478-483.

    Article  Google Scholar 

  74. P. Chetri, A. Choudhury: Physica E, 2013, vol. 47, pp. 257-263.

    Article  Google Scholar 

  75. J.J. Lingane and L.A. Small: J. Am. Chem. Soc., 1949, vol. 71(3), pp. 973-978.

    Article  Google Scholar 

  76. L. Cao, L. Zhu, J. Jiang, R. Zhao, Z. Ye, B. Zhao: Sol. Energy Mater. Sol. Cells, 2011, vol. 95, pp. 894-898.

    Article  Google Scholar 

  77. E. Burstein: Phys. Rev., 1954, vol. 93, pp. 632-633.

    Article  Google Scholar 

  78. K.-F. Lin, H.-M. Cheng, H.-C. Hsu, L.-J. Lin, W.-F. Hsien: Chem. Phys. Lett., 2005, vol. 409, pp. 208-211.

    Article  Google Scholar 

  79. B. Gupta, A. Jain, and R.M. Mehra: J. Mater. Sci. Technol., 2010, vol.26, pp. 223–27.

    Article  Google Scholar 

  80. S. Mridha and D. Basak: J. Appl. Phys., 2007, vol. 101, pp. 083102.

    Article  Google Scholar 

  81. E.F. Keskenler, M. Tomakin, S. Dogan, G. Turgut, S. Aydın, S. Duman, B. Gurbulak: J. Alloy. Compd., 2013, vol. 50, pp. 129-132.

    Article  Google Scholar 

  82. V. Kumar, N. Singh, A. Kapoor, O.M. Ntwaeaborwa, H.C. Swart: Mater. Res. Bull., 2013, vol. 48, pp. 4596-4600.

    Article  Google Scholar 

  83. F. Al-juaid, A. Merazg, A. Al-Baradi, F. Abdel-wahab: Solid-State Elec., 2013, vol. 87, 98-103.

    Article  Google Scholar 

  84. M. Soylu, F. Yakuphanoglu: Mater. Chem. Phys., 2014, vol. 143, pp. 495-502.

    Article  Google Scholar 

  85. Y.F. Makablehn, R. Vasan, J.C. Sarker, A.I. Nusir, S. Seal, M.O. Manasreh: Sol. Energy Mater. Sol. Cells, 2014, vol. 123, pp. 178-182.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Turgut.

Additional information

Manuscript submitted December 5, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgut, G., Sönmez, E. A Study of Pb-Doping Effect on Structural, Optical, and Morphological Properties of ZnO Thin Films Deposited by Sol–Gel Spin Coating. Metall Mater Trans A 45, 3675–3685 (2014). https://doi.org/10.1007/s11661-014-2281-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2281-6

Keywords

Navigation