Skip to main content
Log in

Effects of hydrogen annealing on the structural, optical and electrical properties of indium-doped zinc oxide films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Indium-doped zinc oxide (IZO) films were fabricated by radio-frequency magnetron sputtering. The effects of hydrogen annealing on the structural, optical and electrical properties of the IZO films were investigated. The hydrogen annealing may deteriorate the crystallinity of the films. The surfaces of the films would be damaged when the annealing temperature was higher than 350 °C. After the annealing, the surface roughness of the films would decrease, and high transparency of 80–90% in the visible and near-infrared wavelength would be kept. Meanwhile, the resistivity decreased from 1.25 × 10−3 Ωcm of the deposited films to 6.70 × 10−4 Ωcm of the annealed films. The work function of the IZO films may be modulated between 4.6 and 4.98 eV by varying the hydrogen annealing temperature and duration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.H.H. Peter, G. Magnus, H.F. Richard, C.G. Neil, Adv. Mater. 10, 769 (1998)

    Article  Google Scholar 

  2. K. Yim, C.M. Lee, J. Mater. Sci. Mater. Electron. 18, 385 (2007)

    Article  CAS  Google Scholar 

  3. Z.L. Pei, C. Sun, M.H. Tan, J.Q. Xiao, R.F. Huang, L.S. Wen, J. Appl. Phys. 90, 3432 (2001)

    Article  CAS  ADS  Google Scholar 

  4. S.N. Bai, T.Y. Tseng, J. Mater. Sci. Mater. Electron. 20, 253 (2009)

    Article  CAS  Google Scholar 

  5. F. Yang, S.R. Forrest, Adv. Mater. 18, 2018 (2006)

    Article  CAS  Google Scholar 

  6. H.H. Shin, Y.H. Joung, S.J. Kang, J. Mater. Sci. Mater. Electron. 20, 704 (2009)

    Article  CAS  Google Scholar 

  7. Y. He, J. Kanichi, Appl. Phys. Lett. 76, 661 (2000)

    Article  CAS  ADS  Google Scholar 

  8. J. Cui, A.C. Wang, N.L. Edleman, J. Ni, P. Lee, N.R. Armstrong, T.J. Marks, Adv. Mater. 13, 1476 (2001)

    Article  CAS  Google Scholar 

  9. T.J. Marks, J.G.C. Veinot, J. Cui, H. Yan, A. Wang, N.L. Edleman, J. Ni, Q. Huang, P. Lee, N.R. Armstrong, Synth. Met. 127, 29 (2002)

    Article  CAS  Google Scholar 

  10. Y.G. Cao, L. Miao, S. Tanemura, M. Tanemura, Y. Kuno, Y. Hayashi, Y. Mori, Jpn. J. Appl. Phys. 45, 1623 (2006)

    Article  CAS  ADS  Google Scholar 

  11. D.G. Kim, S.H. Lee, D.H. Kim, G.H. Lee, M. Isshiki, Thin Solid Films 516, 2045 (2008)

    Article  CAS  ADS  Google Scholar 

  12. H. Hara, T. Shiro, T. Yatabe, Jpn. J. Appl. Phys. 43, 745 (2004)

    Article  CAS  ADS  Google Scholar 

  13. Y.R. Park, E.Y. Nam, Y.S. Kim, Jpn. J. Appl. Phys. 47, 468 (2008)

    Article  CAS  ADS  Google Scholar 

  14. Y.R. Park, D.G. Jung, Y.S. Kim, Jpn. J. Appl. Phys. 47, 516 (2008)

    Article  CAS  ADS  Google Scholar 

  15. M.L. Addonizio, A. Antonaia, G. Cantele, C. Privato, Thin Solid Films 349, 93 (1999)

    Article  CAS  ADS  Google Scholar 

  16. S.Y. Myong, K.S. Lim, Appl. Phys. Lett. 82, 3026 (2003)

    Article  CAS  ADS  Google Scholar 

  17. P. Nunes, A. Malik, B. Fernandes, E. Fortunato, P. Vilarinho, R. Martins, Vacuum 52, 49 (1999)

    Article  Google Scholar 

  18. S. Major, A. Banerjee, K.L. Chopra, Thin Solid Films 122, 31 (1984)

    Article  CAS  ADS  Google Scholar 

  19. B.D. Ahn, S.H. Oh, C.H. Lee, G.H. Kim, H.J. Kim, S.Y. Lee, J. Cryst. Growth 309, 128 (2007)

    Article  CAS  ADS  Google Scholar 

  20. C.C. Wang, L.W. Zhang, Phys. Rev. B 74, 024106 (2006)

    Article  ADS  Google Scholar 

  21. B.Y. Oh, M.C. Jeong, D.S. Kim, W. Lee, J.M. Myoung, J. Cryst. Growth 281, 475 (2005)

    Article  CAS  ADS  Google Scholar 

  22. Y. Park, V. Choong, Y. Gao, B.R. Hsieh, C.W. Tang, Appl. Phys. Lett. 68, 2699 (1996)

    Article  CAS  ADS  Google Scholar 

  23. F. Cacialli, J.S. Kim, T.M. Brown, J. Morgado, M. Granstrom, R.H. Friend, G. Gigli, R. Cingolani, L. Favaretto, G. Barbarella, R. Daik, W.J. Feast, Synth. Met. 109, 7 (2000)

    Article  CAS  Google Scholar 

  24. V.I. Adamovich, S.R. Cordero, P.I. Djurovich, A. Tamayo, M.E. Thompson, B.W. D’Andrade, S.R. Forrest, Org. Electron. 4, 77 (2003)

    Article  CAS  Google Scholar 

  25. C.G. Huang, M.L. Wang, Q.L. Liu, Y.G. Cao, Z.H. Deng, Z. Huang, Y. Liu, Q.F. Huang, W. Guo, Semicond. Sci. Technol. 24, 095019 (2009)

    Article  ADS  Google Scholar 

  26. N. Sato, T. Yonehara, Appl. Phys. Lett. 65, 1924 (1994)

    Article  CAS  ADS  Google Scholar 

  27. S. Horch, H.T. Lorensen, S. Helveg, E. Laegsgaard, I. Stensgaard, K.W. Jacobsen, J.K. Norskov, F. Basenbacher, Nature 398, 134 (1999)

    Article  CAS  ADS  Google Scholar 

  28. A. Nayfeh, C.O. Chui, K.C. Saraswat, T. Yonehara, Appl. Phys. Lett. 85, 2815 (2004)

    Article  CAS  ADS  Google Scholar 

  29. C. Kruse, S. Einfeldt, T. Böttcher, D. Hommel, Appl. Phys. Lett. 79, 3425 (2001)

    Article  CAS  ADS  Google Scholar 

  30. Y.G. Cao, M.H. Xie, Y. Liu, Y.F. Ng, H.S. Wu, Appl. Phys. Lett. 83, 5157 (2003)

    Article  CAS  ADS  Google Scholar 

  31. J. Tauc, R. Grigorovici, A. Yancu, Phys. Status. Solidi. 15, 627 (1966)

    Article  CAS  Google Scholar 

  32. N.F. Mott, E.A. Davis, Electronic processes in non-crystalline materials (Oxford University Press, Oxford, 1979)

    Google Scholar 

  33. J.I. Pankove, Optical processes in Semiconductors (Dover, New York, 1971)

    Google Scholar 

  34. S.C. Roy, G.L. Sharma, M.C. Bhatnagar, Solid State Commun. 141, 243 (2007)

    Article  CAS  ADS  Google Scholar 

  35. M.S. Kamboj, R. Thangaraj, D.K. Avasthi, D. Kabiraj, Nucl. Instrum. Methods Phys. Res. B 211, 369 (2003)

    Article  CAS  ADS  Google Scholar 

  36. A. Sharma, B. Kippelen, P.J. Hotchkiss, S.R. Marder, Appl. Phys. Lett. 93, 163308 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the National Basic Research Program (Grant No. 2007CB936700), Key Program of Sci. & Tech. in Fujian Province (No. 2009H0045, 2009I0028), and the National Natural Science Foundation of China (Grant No 90922027).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yongge Cao or Quanlin Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, C., Wang, M., Deng, Z. et al. Effects of hydrogen annealing on the structural, optical and electrical properties of indium-doped zinc oxide films. J Mater Sci: Mater Electron 21, 1221–1227 (2010). https://doi.org/10.1007/s10854-009-0050-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-009-0050-x

Keywords

Navigation