Skip to main content
Log in

Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend: Part II: Effects of Electric Field and Microstructure on Sintering Kinetics

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The current study shows the dramatic effect of an electric field (EF) and use of nanosized cryomilled grains on accelerating sintering kinetics during spark plasma sintering of blended elemental powder compacts of Ti53Al47 targeted to produce γ-TiAl intermetallic compounds. The EF had the dominating effect since it reduced the activation barrier for diffusion through Al3Ti leading to faster growth of Al3Ti; the precursor to γ-TiAl. The Avrami exponent (n) determined for the micrograin compact lies between 1.0 and 1.5, which indicates that reaction sintering is controlled by bulk diffusion in these compacts, while for cryomilled compacts this is between 0.7 and 1.0 suggesting the important role of dislocations and grain boundaries on the transformation during reaction sintering. The activation energies were found to be in increasing order as: cryomilled compacts with EF (182 kJ/mol); micrograin compacts with EF (290 kJ/mol); cryomilled compacts without EF (331 kJ/mol); and micrograin compacts without EF (379 kJ/mol). The cryomilled microstructure also enhanced the sintering kinetics because of the availability of faster diffusing paths in Al and Ti including larger grain boundary area and dislocation density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A.K. Sachdev, K. Kulkarni, Z.Z. Fang, R. Yang and V. Girshov: JOM, 2012, vol. 64, pp. 553-65.

    Article  Google Scholar 

  2. J.C. Rawers and W.R. Wrzesinski: J. Mater. Sci., 1992, vol. 27, pp. 2877-86.

    Article  Google Scholar 

  3. D.K. Yang, P. Hodgson and C. Wen: Intermetallics, 2009, vol. 17, pp. 727-32.

    Article  Google Scholar 

  4. J.G. Luo and V.L. Acoff: Mater. Sci. Eng. A, 2006, vol. 433, pp. 334-42.

    Article  Google Scholar 

  5. A.S. Ramos, M.T. Vieira, L.I. Duarte, M.F. Vieira, F. Viana and R. Calinas: Intermetallics, 2006, vol. 14, pp. 1157-62.

    Article  Google Scholar 

  6. A.S. Ramos and M.T. Vieira: Surf. Coat. Technol., 2005, vol. 200, pp. 326-29.

    Article  Google Scholar 

  7. R. Orru, R. Licheri, A.M. Locci, A. Cincotti and G.C. Cao: Mater. Sci. Eng. R, 2009, vol. 63, pp. 127-287.

    Article  Google Scholar 

  8. J.E. Garay: in Annual Review of Materials Research, D.R. Clarke, M. Ruhle, and F. Zok, eds., Annual Reviews, Palo Alto, 2010, vol. 40, pp. 445–68.

  9. J. Langer, M.J. Hoffmann and O. Guillon: J. Am. Ceram. Soc., 2011, vol. 94, pp. 131-38.

    Article  Google Scholar 

  10. J. Langer, M.J. Hoffmann and O. Guillon: Acta Mater, 2009, vol. 57, pp. 5454-65.

    Article  Google Scholar 

  11. Y. Sun, K. Kulkarni, A.K. Sachdev, and E.J. Lavernia: Metall. Mater. Trans. A, 2014, DOI:10.1007/s11661-014-2215-3.

  12. R.A. Serway, Principles of Physics, 2nd ed (Fort Worth, TX; London: Saunders College Publishing: 1998), p. 602.

    Google Scholar 

  13. Y. Pauleau and P.B. Barna, Protective Coatings and Thin Films: Synthesis, Characterization, and Applications (Springer, New York: 1997), p. 215.

    Book  Google Scholar 

  14. T. Voisin, L. Durand, N. Karnatak, S. Le Gallet, M. Thomas, Y. Le Berre, J.-F. Castagné and A. Couret: J. Mater. Process. Technol., 2013, vol. 213, pp. 269-78.

    Article  Google Scholar 

  15. J. Räthel, M. Herrmann and W. Beckert: J. Eur. Ceram. Soc., 2009, vol. 29, pp. 1419-25.

    Article  Google Scholar 

  16. S. Munoz and U. Anselmi-Tamburini: J. Mater. Sci., 2010, vol. 45, pp. 6528-39.

    Article  Google Scholar 

  17. S. Munoz and U. Anselmi-Tamburini: Int. J. Adv. Manuf. Technol., 2013, vol. 65, pp. 127-40.

    Article  Google Scholar 

  18. J.W. Chistain, The Theory of Transformations in Metals and Alloys (Pergamon-Elsevier Science Ltd: Oxford, UK, 2002).

    Google Scholar 

  19. D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51, pp. 1-60.

    Article  Google Scholar 

  20. L. Xu, Y.Y. Cui, Y.L. Hao and R. Yang: Mater. Sci. Eng. A, 2006, vol. 435, pp. 638-47.

    Article  Google Scholar 

  21. F.J.J. Vanloo and G.D. Rieck: Acta Metall., 1973, vol. 21, pp. 61-71.

    Article  Google Scholar 

  22. T. Shimozaki, T. Okino, M. Yamane, Y. Wakamatsu and M. Onishi: Defect Diffus. Forum, 1997, vol. 143, pp. 591-96.

    Article  Google Scholar 

  23. K. Nonaka, H. Fujii and H. Nakajima: Mater. Trans., 2001, vol. 42, pp. 1731-40.

    Article  Google Scholar 

  24. X. Wang, H.Y. Sohn and M.E. Schlesinger: Mater. Sci. Eng. A, 1994, vol. 186, pp. 151-55.

    Article  Google Scholar 

  25. J. Philibert Atom Movements, Diffusion and Mass Transport in Solids (Les Editions de Physique, Les Ulis: 1991), pp 320-23.

    Google Scholar 

  26. Z.A. Munir, U. Anselmi-Tamburini and M. Ohyanagi: J. Mater. Sci., 2006, vol. 41, pp. 763-77.

    Article  Google Scholar 

  27. J.E. Garay, U. Anselmi-Tamburini and Z.A. Munir: Acta Mater, 2003, vol. 51, pp. 4487-95.

    Article  Google Scholar 

  28. N. Bertolino, J. Garay, U. Anselmi-Tamburini and Z.A. Munir: Philos. Mag. B, 2002, vol. 82, pp. 969-85.

    Article  Google Scholar 

  29. N. Bertolino, J. Garay, U. Anselmi-Tamburini and Z.A. Munir: Scripta Mater., 2001, vol. 44, pp. 737-42.

    Article  Google Scholar 

  30. K. Kulkarni, Y. Sun, A.K. Sachdev, E. Lavernia: Scripta Mater., 2013, vol. 68, pp. 841-44.

    Article  Google Scholar 

  31. J.P. Dekker, P. Gumbsch, E. Arzt and A. Lodder: Phys. Rev. B, 1999, vol. 59, pp. 7451-57.

    Article  Google Scholar 

  32. P. Asokakumar, K. Obrien, K.G. Lynn, P.J. Simpson and K.P. Rodbell: Appl. Phys. Lett., 1996, vol. 68, pp. 406-08.

    Article  Google Scholar 

  33. J.E. Garay, S.C. Glade, U. Anselmi-Tamburini, P. Asoka-Kumar and Z.A. Munir: Appl. Phys. Lett., 2004, vol. 85, pp. 573-75.

    Article  Google Scholar 

  34. F. Zhou, J. Lee and E.J. Lavernia: Scripta Mater., 2001, vol. 44, pp. 2013-17.

    Article  Google Scholar 

  35. K.E. Knipling, D.C. Dunand and D.N. Seidman: Z. Metallkd., 2006, vol. 97, pp. 246-65.

    Article  Google Scholar 

  36. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys. (CRC Press, Boca Raton: 2004), pp 98-103.

    Google Scholar 

  37. L. A. Stanciu, V. Y. Kodash and J. R. Groza: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2633-38.

    Article  Google Scholar 

  38. Y. Zhou, K. Hirao, Y. Yamauchi and S. Kanzaki: Scripta Mater., 2003, vol. 48, pp. 1631-36.

    Article  Google Scholar 

Download references

Acknowledgments

The experimental support and advice provided by Ertorer Osman, Haiming Wen, Yizhang Zhou, and Baolong Zheng are greatly appreciated. The authors would like to thank the management of General Motors for supporting this research. EJL would also like to thank the National Science Foundation for their support under the Grant no. NSF DMR-1210437.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Sun.

Additional information

Manuscript submitted July 7, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, Y., Kulkarni, K., Sachdev, A.K. et al. Synthesis of γ-TiAl by Reactive Spark Plasma Sintering of Cryomilled Ti and Al Powder Blend: Part II: Effects of Electric Field and Microstructure on Sintering Kinetics. Metall Mater Trans A 45, 2759–2767 (2014). https://doi.org/10.1007/s11661-014-2216-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2216-2

Keywords

Navigation