Skip to main content

Advertisement

Log in

Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Net-shaped porous Ti-rich Ti51Ni49 alloy with well-controlled porosity, pore size, and pore shape are fabricated by pressing-and-sintering compacts containing fine Ti and Ni powders and coarse NaCl powders. After sintering at 1323 K (1050 °C) for 30 minutes in a high vacuum, the NaCl space holder is removed by evaporation, and the remaining Ti and Ni powders are sintered with about 2.3 vol pct liquid phase. The sintered Ti51Ni49 compacts have porosities of 26, 64, 70, 78, and 85 pct, and no distortion is observed. DSC tests show that the M S temperature and ΔH are about 347 K (74 °C) and 28 J/g, respectively, and that they are almost independent of the porosity and close to those of wrought Ti-rich TiNi alloys. These porous Ti51Ni49 compacts exhibit a homogeneous microstructure, and the compressive properties and porosity are close to those of human bones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Bansiddhi, T. D. Sargeant, S. I. Stupp and D. C. Dunand, “Porous NiTi for Bone Implants: A Review”, Acta Biomaterialia, 2008, vol. 4, pp. 773-782.

    Article  Google Scholar 

  2. G. Ryan, A. Pandit and D. P. Apatsidis, “Fabrication Methods of Porous Metals for Use in Orthopaedic Applications”, Biomaterials, 2006, vol. 27, pp. 2651-2670.

    Article  Google Scholar 

  3. A. Kapanen, J. Ryhänen, A. Danilov and J. Tuukkanen, “Effect of Nickel-Titanium Shape Memory Metal Alloy on Bone Formation”, Biomaterials, 2001, vol. 22, pp. 2475-2480.

    Article  Google Scholar 

  4. M. Schwartz, ed.: Smart Materials, CRC Press/Taylor and Francis, New York, NY, 2008, pp. 1–46.

  5. K. Otsuka and X. Ren, “Physical Metallurgy of TiNi-based shape Memory Alloys”, Progress in Material Science, 2005, vol. 50, pp. 511-678.

    Article  Google Scholar 

  6. M. Barrabés, P. Sevilla, J. A. Planell and F. J. Gil, “Mechanical Properties of Nikel-titanium Foams for Reconstructive Orthopaedics”, Materials Science and Engineering C, 2008, vol. 28, pp. 23-27.

    Article  Google Scholar 

  7. C. L. Chu, C. Y. Chung, P. H. Lin, and S.D. Wang, “Fabrication and Properties of Porous NiTi Shape Memory Alloys for Heavy Load-Bearing Medical Applications”, Journal of Materials Processing Technology, 2005, vol. 169, pp. 103-107.

    Article  Google Scholar 

  8. B. Yuan, X. P. Zhang, C. Y. Chung, M. Q. Zeng and M. Zhu, “A Comparative Study of the Porous TiNi Shape-Memory Alloys Fabricated by Three Different Processes”, Metallurgical and Materials Transactions A, 2006, vol. 37A, pp. 755-761.

    Article  Google Scholar 

  9. J. Y. Xiong, Y. C. Li, X. J. Wang, P. D. Hodgson, and C. E. Wen, “Titanium-Nickel Shape Memory Alloy Foams for Bone Tissue Engineering”, J. Mechanical Behavior of Biomedical Materials, 2008, vol. 1, pp. 269-273.

    Article  Google Scholar 

  10. A. Biswas, “Porous NiTi by Thermal Explosion Mode of SHS: Processing, Mechanism, and Generation of Single Phase Microstructure”, Acta Materialia, 2005, vol. 53, pp. 1415-1425.

    Article  Google Scholar 

  11. O. Scalzo, S. Turenne, M. Gauthier and V. Brailovski, “Mechanical and Microstructural Characterization of Porous NiTi Shape Memory Alloys”, Metallurgical and Materials Transactions A, 2009, vol. 40A, pp. 2061-2070.

    Article  Google Scholar 

  12. A. Bansiddhi and D. C. Dunand, “Shape-memory NiTi foams Produced by Solid-state Replication with NaF”, Intermetallics, 2007, vol. 15, pp. 1612-1622.

    Article  Google Scholar 

  13. A. Bansiddhi and D.C. Dunand, “Shape- memory NiTi foams Produced by Replication of NaCl Space-holders”, Acta Biomaterialia, 2008, vol. 4, pp. 1996-2007.

    Article  Google Scholar 

  14. G. Tosun, L. Ozler, M. Kaya, and N. Orthan, “A Study on Microstructure and Porosity of NiTi Alloy Implants Produced by SHS”, J. Alloys and Compounds, 2009, vol. 487, pp. 605-611.

    Article  Google Scholar 

  15. S. Wu, C. Y. Chung, X. Liu, P. K. Chu, J. P. Y. Ho, C. L. Chu, Y. L. Chan, K. W. K. Yeung, W. W. Lu, K. M. C. Cheung, and K. D. K. Luk, “Pore Formation Mechanism and Characterization of Porous NiTi Shape Memory Alloys Synthesized by Capsule-Free Hot Isostatic Pressing”, Acta Materialia, 2007, vol. 55, pp. 3437-3451.

    Article  Google Scholar 

  16. S. L. Zhu, X. J. Yang, D. H. Fu, L. Y. Zhang, C. Y. Li, and Z. D. Cui, “Stress-Strain Behavior of Porous NiTi Alloys Prepared by Powder Sintering”, Materials Science & Engineering A, 2005, vol. 408, pp. 264-268.

    Article  Google Scholar 

  17. Y. P. Zhang, D. S. Li, and X. P. Zhang, “Gradient Porosity and Large Pore Size NiTi Shape Memory Alloys”, Scripta Materialia, 2007, vol. 57, pp. 1020-1023.

    Article  Google Scholar 

  18. Y-H Li, L-J Rong, and Y-Y Li, “Compressive Property of Porous NiTi Alloy Synthesized by Combustion Synthesis”, J. Alloys and Compounds, 2002, vol. 345, pp. 271-274.

    Article  Google Scholar 

  19. D. S. Li, Y. P. Zhang, G. Eggeler, and X. P. Zhang, “High Porosity and High-Strength Porous NiTi Shape Memory Alloys with Controllable Pore Characteristics”, J. Alloys and Compounds, 2009, vol. 470, pp. L1-L5.

    Article  Google Scholar 

  20. M. Kaya, N. Orhan, B. Kurt and T. I. Khan, “The Effect of Solution Treatment under Loading on The Microstructure and Phase Transformation Behavior of Porous NiTi Shape Memory Alloy Fabricated by SHS”, Journal of Alloys and Compounds, 2009, vol. 475, pp. 378-382.

    Article  Google Scholar 

  21. M. Kaya, N. Orhan and B. Kurt, “Effect of Solution Treatment under Load on Microstructure and Fabrication of Porous NiTi Shape Memory Alloy by Self- propogating High Temperature Synthesis”, Powder Metallurgy, 2009, vol. 52, pp. 36-41.

    Article  Google Scholar 

  22. J. Mentz, M. Bram, H. P. Buchkremer and D. Stöver, “Improvementn of Mechanical Properties of Powder Metallurgical NiTi Shape Memory Alloys”, Advanced Materials Engineering, 2006, vol. 8, pp. 247- 252.

    Article  Google Scholar 

  23. J. Mentz, J. Frenzel, M. F. X. Wagner, K. Neuking, G. Eggeler, H. P. Buchkremer and D. Stöver, “Powder Metallurgical Processing of NiTi Shape Memory Alloys with Elvated Transformation Temper- atures”, Materials Science and Engineering A, 2008, vol. 491, pp. 270-278.

    Article  Google Scholar 

  24. B. Bertheville, “Porous Single-phase NiTi Processed under Ca Reducing Vapor for Use as A Bone Graft Substitute”, Biomaterialia, 2006, vol. 27, pp. 1246- 1250.

    Article  Google Scholar 

  25. F.C. Yen and K.S. Hwang: Proceedings of World Powder Metallurgy Congress and Exhibition, European Powder Metallurgy Association, Shrewsbury, 2010, vol. 5, pp. 421–29.

  26. F. C. Yen, K. S. Hwang, S. K. Wu and S. H. Wu, “TiNi Shape Memory Alloys with High Sintered Densities and Well-defined Martensitic Transformation Behavior”, Metallurgical and Materials Transactions A, 2011, vol. 42A, pp. 2431-2441.

    Article  Google Scholar 

  27. F. C. Yen and K. S. Hwang, “Shape Memory Characteristics and Mechanical Properties of High-density Powder Metal TiNi with Post-sintering Heat Treatment”, Materials Science and Engineering A, 2011, vol. 528, pp. 5296-5305.

    Article  Google Scholar 

  28. F. C. Yen and K. S. Hwang, “Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron”, Metallurgical and Materials Transactions A, 2012, vol. 43A, pp. 687-696.

    Article  Google Scholar 

  29. H. C. Lin, S. K. Wu and J. C. Lin, “The Martensitic Transformation in Ti-rich TiNi Shape Memory Alloys”, Materials Chemistry and Physics, 1994, vol. 37, pp. 184-190.

    Article  Google Scholar 

  30. L. Zhang, C. Xie and J. Wu, “Martensitic Tensformation and Shape Memory Effect of Ti-49at.%Ni Alloys”, Materials Science and Engineering A, 2006, vol. 438–440, pp.905-910.

    Article  Google Scholar 

  31. T. Aydoğmus and S. Bor, “Processing of Porous TiNi Alloys Using Magnesium as Space Holder”, J. Alloys and Compounds, 2009, vol. 478, pp. 705-710.

    Article  Google Scholar 

  32. T. Aydoğmus and S. Bor, “Superelasticity and Compression Behavior of Porous TiNi Alloys Produced Using Mg Spacers”, J. Mechanical Behavior of Biomedical Materials, 2012, vol. 15, pp. 59-69.

    Article  Google Scholar 

  33. W.M. Haynes, ed.: CRC Handbook of Chemistry and Physics, 92nd ed., CRC Press/Taylor and Francis, Boca Raton, FL, 2011, pp. 88–117.

  34. X. Zhao, H. Sun, L. Lan, J. Huang, H. Zhang, and Y. Wang, “Pore Structure of High-Porosity NiTi Alloys Made from Elemental Powders with NaCl Temporary Space-Holders”, Materials Letters, 2009, vol. 63, pp. 2402-2404.

    Article  Google Scholar 

  35. M. Bram, M. Köhl, H. P. Buchkremer, and D. Stöver, “Mechanical Properties of Highly Porous NiTi Alloys”, J. Materials Engineering and Performance, 2011, vol. 20, pp. 522-528.

    Article  Google Scholar 

  36. L-J. Chen, T. Ling, Y-M .Li, H. He, and Y-H. Hu, Trans. Nonferr. Met. Soc. of China, 2009, vol. 19, pp. 1174–79.

    Article  Google Scholar 

  37. Y. Torres, J. J. Pavón, and J. A. Rodríguez, “Processing and Characterization of Porous Titanium for Implants by Using NaCl as Space Holder”, J. Materials Processing Technology, 2012, vol. 212, pp. 1061-1069.

    Article  Google Scholar 

  38. J. Graham, M. Ries, and L. Pruitt, J. Bone Joint Surg., 2003, vol. 85A, pp. 1901–908.

    Google Scholar 

  39. E. F. Morgan, H. H. Bayraktar, and T. M. Keaveny, “Trabecular Bone Modulus-Density Relationships Depend on Anatomic Site”, J. Biomechanics, 2003, vol. 36, pp. 897-904.

    Article  Google Scholar 

  40. L. J. Gibson, “The Mechanical Behavior of Cancellous Bone”, J. Biomechanics, 1985, vol. 18, No. 5, pp. 317-328.

    Article  Google Scholar 

  41. A. Rohlmann, H. Zilch, G. Bergmann, and R. Kölbel, “Material Properties of Femoral Cancellous Bone in Axial Loading, Part I: Time Independent Properties”, Arch. Orthop. Traumat. Surg., 1980, vol. 97, pp. 95-102.

    Article  Google Scholar 

  42. J. C. Rice, S. C. Cowin, and J. A. Bowman, “On the Dependence of the Elasticity and Strength of Cancellous Bone on Apparent density”, J. Biomechanics, 1988, vol. 21, no. 2, pp. 155-168.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of this study provided by the National Science Council (NSC) and National Taiwan University (NTU), Taiwan, under Grants NSC97-2221-E002-038-MY3, NSC100-2221-E002-100-MY3, and NTU-101R891803.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shyi-Kaan Wu.

Additional information

Manuscript submitted September 19, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, FC., Hwang, KS. & Wu, SK. Fabrication of Porous Ti-rich Ti51Ni49 by Evaporating NaCl Space Holder. Metall Mater Trans A 45, 2626–2635 (2014). https://doi.org/10.1007/s11661-014-2196-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-014-2196-2

Keywords

Navigation