Skip to main content
Log in

Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ti51Ni49 compacts consolidated with persistent liquid-phase sintering usually contain Ti2Ni networks at the grain boundaries, which cause adverse effects on mechanical properties. With 0.5 and 1.0 at pct B additions, fine TiB forms during heating and sintering and acts as a nucleation site for Ti2Ni to precipitate within the grain during cooling. The resultant uniform distribution of TiB and Ti2Ni impedes grain growth and prevents the formation of continuous Ti2Ni precipitates at grain boundaries. As a result, a significant increase in tensile elongation, and not a decrease, as in most as-cast titanium alloys, is obtained because of these changes. The tensile strength also increases, without deterioration of the shape memory characteristics. The tensile strength and elongation are close to those of wrought TiNi alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. Igharo and J.V. Wood: Powder Metall., 1985, vol. 28. pp. 131-39.

    CAS  Google Scholar 

  2. D.G. Morris and M.A. Morris: Mater. Sci. Eng. A, 1989, vol. 110, pp. 139-49.

    Article  Google Scholar 

  3. N. Zhang, P.B. Khosrovabadi, J.H. Lindenhovius, and B.H. Kolster: Mater. Sci. Eng. A, 1992, vol. 150, pp. 263-70.

    Article  Google Scholar 

  4. J.C. Hey and A.P. Jardine: Mater. Sci. Eng. A, 1994, vol. 188, pp. 291-300.

    Article  Google Scholar 

  5. S.M. Green, D.M. Grant, and N.R. Kelly: Powder Metall., 1997, vol. 40, pp. 43-47.

    CAS  Google Scholar 

  6. F.C. Yen and K.S. Hwang: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5296-5305.

    Article  CAS  Google Scholar 

  7. F.C. Yen, K.S. Hwang, S.K. Wu, and S.H. Wu: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2431-41.

    Article  Google Scholar 

  8. J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver: Adv. Eng. Mater., 2006, vol. 8, pp. 247-52.

    Article  CAS  Google Scholar 

  9. L. Zhang, C. Xie, and J. Wu: Mater. Sci. Eng. A, 2006, vols. 438–440, pp. 905-10.

    Google Scholar 

  10. J. Mentz, J. Frenzel, M.F.-X. Wagner, K. Neuking, G. Eggeler, H.P. Buchkremer, and D. Stöver: Mater. Sci. Eng. A, 2008, vol. 491, pp. 270-78.

    Article  Google Scholar 

  11. H.F. Lopez, A. Salinas, and H. Calderón: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 717-29.

    CAS  Google Scholar 

  12. H. Kato, T. Koyari, M. Tokizane, and S. Miura: Acta Metall. Mater., 1994, vol. 42, pp. 1351-58.

    Article  CAS  Google Scholar 

  13. J. Mentz, M. Bram, H.P. Buchkremer, and D. Stöver: Mater. Sci. Eng. A, 2008, vols. 481–482, pp. 630-34.

    Google Scholar 

  14. C. Zener: Trans. Metall. Soc. AIME, 1948, vol. 175, pp. 15-51.

    Google Scholar 

  15. Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, and K. Mitose: Mater. Lett., 1998, vol. 36, pp. 85-94.

    Article  CAS  Google Scholar 

  16. J. Zhu, A. Kamiya, T. Yamada, W. Shi, and K. Naganuma: Mater. Sci. Eng. A, 2003, vol. 339, pp. 53-62.

    Article  Google Scholar 

  17. V.K. Chandravanshi, R. Sarkar, P. Ghosal, S.V. Kamat, and T.K. Nandy: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 936-46.

    Article  CAS  Google Scholar 

  18. D.J. Mceldowney, S. Tamirisakandala, and D.B. Miracle: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1003-15.

    Article  CAS  Google Scholar 

  19. J. Frenzel, E.P. George, A. Dlouhy, Ch. Somsen, M.F.-X Wagner, and G. Eggeler: Acta Mater., 2010, vol. 58, pp. 3444-58.

    Article  CAS  Google Scholar 

  20. H.C. Lin and S.K. Wu: Scripta Metall. Mater., 1992, vol. 26, pp. 59-62.

    Article  CAS  Google Scholar 

  21. M. Binnewies and E. Milke: Thermochemical Data of Elements and Compounds, 2nd ed., Wiley-VCH, Weinheim, Germany, 2002, pp. 102-16.

    Book  Google Scholar 

  22. M.H. Mueller and H.W. Knott: Trans. Metall. Soc. AIME, 1963, vol. 227, pp. 674-78.

    CAS  Google Scholar 

  23. H.T. Takeshita, H. Tanaka, N. Kuriyama, T. Sakai, I. Uehara, and M. Haruta: J. Alloy Compd., 2000, vol. 311, pp. 188-93.

    Article  CAS  Google Scholar 

  24. R.W. Cahn and P. Haasen: Physical Metallurgy, 3rd ed., Elsevier Science, Atlanta, GA, 1983, pp. 1650-51.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the National Science Council of the Republic of China for their financial support of this work under contract NSC97-2221-E002-033-MY3. We also thank Professor Shyi-Kaan Wu for providing the DSC instrument and tensile test machine, and Chung-Yuan Kao and Yuan-Tzu Lee for their assistance in EPMA analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuen-Shyang Hwang.

Additional information

Manuscript submitted January 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yen, FC., Hwang, KS. Microstructures, Mechanical Properties, and Shape Memory Characteristics of Powder Metallurgy Ti51Ni49 Modified with Boron. Metall Mater Trans A 43, 687–696 (2012). https://doi.org/10.1007/s11661-011-0894-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0894-6

Keywords

Navigation