Skip to main content
Log in

The Effect of Particle Size on the Oxidation Resistance of a Nanoceria-Coated 304 Stainless Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this work, the oxidation resistance of 304 stainless steel (SS) in the uncoated and nanoceria-coated conditions was investigated at 1073 K and 1273 K (800 °C and 1000 °C) under dry air conditions. It was found that nanoceria coatings with average particle sizes of 10 nm were effective enough to fully protect the 304 SS from oxidation. In particular, when the average nanoceria particle size in the coating was less than 5 nm, the coatings were highly efficient in hindering the oxidation susceptibility of the 304 SS. Improvements in the oxidation resistance of up to two orders of magnitude were experimentally found in this work. Finite elements were used in solving Fick’s Second Law using the Crank–Nicholson method in order to elucidate the active oxidation mechanisms in the bare and nanoceria-coated 304 SS. Oxygen penetration profiles across the scale were predicted suggesting that in the absence of a nanoceria coating, the oxygen concentration at a given scale depth is three times as high as in the nanoceria-coated samples. Moreover, kinetic simulations for scale growth through an exponential term containing a factor λ were satisfactory in predicting the experimental outcome on mass gain vs time. Ostwald-Ripening mechanisms were considered to be active during the dissolution of nanoceria particles. It was found that when average particle sizes fall below 5 nm in size, they tend to dissolve immediately, but the dissolution times become exceedingly long when the particle sizes increase above 10 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. D. P. Moon and M. J. Bennett, Mater. Sci. Forum, vol. 43, pp. 269-298, 1989.

    Article  Google Scholar 

  2. E. A. Polman, T. Fransen and P. J. Gellings, J. Phys.Condens. Matter, vol. 1, pp. 4497-4510. 1989.

    Google Scholar 

  3. J. Stringer, Mater. Sci. Eng. A, vol. 120, pp. 1293,1989.

    Article  Google Scholar 

  4. D. P. Moon, Mater. Sci. Technol., vol. 5, pp. 754-60, 1989.

    Article  Google Scholar 

  5. L.B. Pfeil: U.K. Patent No. 459848, 1937.

  6. B. A. Pint, Oxid. Met. vol. 45, pp. 1-37, 1996.

    Article  Google Scholar 

  7. F. Czerwinski and J. A. Szpunar, J. Sol-Gel Science and Technology, vol. 9, pp 103-114, 1997.

    Google Scholar 

  8. F. Czerwinski and J. A. Szpunar, Thin Solid Films, vol. 289, pp. 213219, 1996.

    Article  Google Scholar 

  9. S. Roure, E. Czerwinski and A. Petric, Oxid. Metals, vol. 42, pp. 75-102, 1994.

    Google Scholar 

  10. F. Czerwinski and W.W. Smeltzer, Oxid. Metals, 1993, vol. 40, pp. 503–27.

    Article  Google Scholar 

  11. S. Seal, S. K. Bose and S. K. Roy, Oxid. Metals, vol 41, pp. 139-178, 1994.

    Article  Google Scholar 

  12. V.Viswanathan, R. Filmalter, S. Patil, S. Deshpande and S. Seal, J. Am. Ceram. Soc., Vol. 90, pp. 870-877, 2007.

    Article  Google Scholar 

  13. R. Thanneeru, S. Patil, S. Deshpande and S. Seal, Acta Mater., vol. 55, pp. 3457-3466, 2007.

    Article  Google Scholar 

  14. S. Patil, S. C. Kuiry, S. Seal and R. Vanfleet, J. Nanopart. Res.,vol.4, pp. 433-438, 2002.

    Article  Google Scholar 

  15. E. M. Levin, and H. F. McMurdie: Phase Diagrams for Ceramists, The American Ceramic Society, Columbus, OH, 1975.

    Google Scholar 

  16. H. Zhang and H. F. Lopez, Comp. Mats. Sci., Vol. 79, pp. 634-638, 2013.

    Article  Google Scholar 

  17. Z. Wu, L. Guo, H. Li, R.E. Benfield, Q. Yang, D. Grandjean, Q. Liand, H. Zhu: J. Phys., 2001, vol. 13, pp. 5269–84.

    Google Scholar 

  18. C. E. Reis-de-Carvalho, G. M. da Acosta, A. B. Cota and E. H. Rossi, Mats. Res. Vol. 9, pp. 393-397, 2006.

    Google Scholar 

  19. K.A. Habib, M.S. Damra, J.J. Saura, I. Cervera, and J. Bellés: Int. J. Corr., 2011, vol. 20, DOI: 10.1155/2011/824676.

  20. P. Kofstad, High-Temperature Oxidation of Metals, John Wiley & Sons, Inc., New York/London/Sydney, 1966.

    Google Scholar 

  21. B. Pieraggi, R. A. Rapp, J. Electrochem. Soc. vol. 140, pp. 2844-2850, 1993.

    Article  Google Scholar 

  22. D. L. Douglass, P. Kofstad, A. Rahmel, G. C. Wood, Oxid. Met. vol. 45, pp. 529-620, 1996.

    Article  Google Scholar 

  23. H. Zhang: Ph.D. Dissertation, University of Wisconsin, 2007.

  24. H.F. Lopez and H. Mendoza-Del-Angel: Symposium 5 Advanced Materials, XIX Intl. Congress of Mats. Research, August 15–19, Cancun 2010. Conf. Proc., MRS, vol. 1276, pp. 123–28.

  25. S. Tsunekawa, K. Ishikawa, Z. Q. Li, Y. Kawazoe and A. Kasuya, Phys. Rev. Lett., vol. 85, pp. 3440-3443, 2000.

    Article  Google Scholar 

  26. X. D. Zhou and W. Huebner, Appl. Phys. Lett., vol. 79, pp. 3512-14, 2001.

    Article  Google Scholar 

  27. H. Nagai and M. Okabayashi, J. Trans. Japan Inst. Metals, vol. 22, pp. 101-108, 1982.

    Google Scholar 

  28. P. Wynblatt and N. A. Gjostein, Acta Metall., vol. 24, pp. 1165-117, 1976.

    Article  Google Scholar 

  29. P. Wynblatt, R.A. DallaBetta, and N.A. Gjostein: in The Physical Basis For Heterogeneous Catalysts, E. Drangles and R.I. Jafee, eds., Plenum Press, New York, 1975.

  30. H. T. Michels, Metall, Trans. A, vol. 7A, pp. 379-88, 1976.

    Article  Google Scholar 

  31. S.R. Challa, A. Delariva, and A. K. Datye: 22th North Am. Mtg., Detroit Michigan June 5–10, 2011.

  32. C.T. Campbell, S.C. Parker, and D.R. Starr: Science, 2002, vol. 298, pp. 811–814.

    Article  Google Scholar 

  33. M. Kamiya, E. Shimada, Y.Ikuma, M. Komatsu, and H. Haneda: J. Electrochem. Soc., 2000, vol. 147, pp. 1222–1227.

    Article  Google Scholar 

  34. A. Gotte: Ph.D. Dissertation, Uppsala University, Uppsala, 2006.

  35. T. X. Sayle, S. C. Parker and C. R. A. Catlow, Surface Science, vol. 316, pp. 329-336, 1994.

    Article  Google Scholar 

  36. B. Carnahan: Applied Numerical Methods, John Wiley & Sons, Inc., New York, 1969.

    Google Scholar 

  37. J. Crank, The Mathematics of Diffusion, 2nd edition, Clarendon-Press, Oxford, 1986.

    Google Scholar 

Download references

Acknowledgments

The authors are grateful for the support provided by The National Computational Science Alliance (NCSA) at the University of Illinois at Urbana-Champaign under Grant DMR060004N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugo F. Lopez.

Additional information

Manuscript submitted April 7, 2013.

Appendix A

Appendix A

1.1 Crank–Nicholson Method

In general, the driving force for high temperature oxidation processes is rate limited by the active mass transport mechanisms across the scale thickness. Under these conditions, Fick’s Second Law can be used when considering the diffusional processes.

$$ \frac{\partial c}{\partial t} = \nabla \left( {D\nabla c} \right), $$
(A1)

where c is the concentration of a given species after time t and its gradient by means of the location, x, and D is the diffusion coefficient. For two-dimensional (2-D) diffusional problems, and assuming that the diffusion coefficients are not dependent on position, Eq. [1] can be rewritten as

$$ \frac{\partial c}{\partial t} = D_{x} \frac{{\partial^{2} c}}{{\partial x^{2} }} + D_{y} \frac{{\partial^{2} c}}{{\partial y^{2} }}, $$
(A2)

where D x and D y are the diffusion coefficients in x and y directions, respectively. A solution to the 2-D form of Fick’s Second Law requires both initial conditions and subsequent time-dependent boundary conditions.[35] Hence, in this work, a network of grid points was employed to solve Eq. [A2] using the Crank–Nicholson method.[36] In this case, Eq. [A2] can be rewritten as

$$ \frac{\partial c}{\partial t} = \frac{{c_{i,j,n + 1} - c_{i,j,n} }}{\varDelta t} = \frac{1}{2}D_{x} \left( {\delta_{x}^{2} c_{i,j,n} + \delta_{x}^{2} c_{i,j,n + 1} } \right) + \frac{1}{2}D_{y} \left( {\delta_{y}^{2} c_{i,j,n} + \delta_{y}^{2} c_{i,j,n + 1} } \right). $$
(A3)
$$ \delta_{x}^{2} c_{i,j,n} = \frac{{c_{i - 1,j,n} - 2c_{i,j,n} + c_{i + 1,j,n} }}{{\left( {\Updelta x^{2} } \right)}} $$
(A4)
$$ \delta_{x}^{2} c_{i,j,n + 1} = \frac{{c_{i - 1,j,n + 1} - 2c_{i,j,n + 1} + c_{i + 1,j,n + 1} }}{{\left( {\Updelta x^{2} } \right)}} $$
(A5)
$$ \delta_{y}^{2} c_{i,j,n} = \frac{{c_{i,j - 1,n} - 2c_{i,j,n} + c_{i,j + 1,n} }}{{\left( {\Updelta y^{2} } \right)}} $$
(A6)
$$ \delta_{y}^{2} c_{i,j,n + 1} = \frac{{c_{i,j - 1,n + 1} - 2c_{i,j,n + 1} + c_{i,j + 1,n + 1} }}{{\left( {\Updelta y^{2} } \right)}} $$
(A7)

The finite-difference Eq. [A3] with locations of variable step widths, Δx, Δy, and Δt, is illustrated in Figure A1. The scale is assumed to be predominantly Cr2O3 and the boundary concentrations are assumed (i) to be homogeneous and (ii) to experience only relatively small changes; Eq. [A3] can be solved using the Gaussian elimination method and the Gauss–Seidel iterative method. This entire process was implemented in MATLAB.

A1
figure 8

Schematic representation of the two-dimensional finite-difference mesh applied using the Crank–Nicholson solution approach

The diffusional data needed for the finite-difference calculations were obtained by considering Wagner’s oxidation theory,[20] as given in the literature[37]:

$$ K_{\text{p}} = \int\limits_{{p_{{{\text{O}}_{2}^{i} }} }}^{{p_{{{\text{O}}_{2}^{o} }} }} {D_{\text{eff}} d\ln p\left( {{\text{O}}_{2} } \right)} , $$
(A8)

where D eff is the effective diffusion coefficient, P O2 is the partial oxygen pressure, and K p is the parabolic oxidation rate constant. In the present work, D x and D y were replaced by D eff. In the numerical simulation, the scale/substrate interface including gbs was represented by a row of high diffusivity elements (see Figure A2). Close to the surface, the mesh was continuously refined to get a more precise solution on the overall diffusion across the oxide scale.

A2
figure 9

(a) Schematic representation of the oxide scale, (b) diffusion paths, and (c) finite-difference mesh for 2-D diffusion

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lopez, H.F., Zhang, H. The Effect of Particle Size on the Oxidation Resistance of a Nanoceria-Coated 304 Stainless Steel. Metall Mater Trans A 45, 2297–2308 (2014). https://doi.org/10.1007/s11661-013-2159-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2159-z

Keywords

Navigation