Skip to main content
Log in

Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Modified 9Cr-1Mo steel is a heat-treatable steel and hence the microstructure is temperature sensitive. During welding, the weld joint (WJ) is exposed to various temperatures resulting in a complex heterogeneous microstructure across the weld joint, such as the weld metal, heat-affected zone (HAZ) (consisting of coarse-grained HAZ, fine-grained HAZ, and intercritical HAZ), and the unaffected base metal of varying mechanical properties. The overall creep–fatigue interaction (CFI) response of the WJ is hence due to a complex interplay between various factors such as surface oxides and stress relaxation (SR) occurring in each microstructural zone. It has been demonstrated that SR occurring during application of hold in a CFI cycle is an important parameter that controls fatigue life. Creep–fatigue damage in a cavitation-resistant material such as modified 9Cr-1Mo steel base metal is accommodated in the form of microstructural degradation. However, due to the complex heterogeneous microstructure across the weld joint, SR will be different in different microstructural zones. Hence, the damage is accommodated in the form of preferential coarsening of the substructure, cavity formation around the coarsened carbides, and new surface formation such as cracks in the soft heat-affected zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. J. M. Vitek, R. L. Klueh, Metall. Trans. A, 1983, Vol. 14, pp. 1047-1055.

    Google Scholar 

  2. B. W. Jones, C. R. Hills, D. H. Polonis, Metall. Trans. A, 1991, Vol. 22, pp. 1049-1058.

    Article  Google Scholar 

  3. I.A. Shibli: in Parsons 2003, Engineering Issues in Turbine Machinery, Power Plant and Renewables, Proc. 6th Int. Charles Parsons Turbine Conf., 16–18 Sept., A. Strang, R.D. Conroy, W.M. Banks, M. Blackler, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Star, and R.W. Vanstone, eds., Trinity College Dublin, Ireland, 2003, pp. 261–79.

  4. C. Middleton and E. Metcalfe: “Review of Laboratory Type IV Cracking Data in High Chromium Ferritic Steels”, Paper C386/027, IMechE Proceedings, London, 1990.

  5. I.A. Shibli: Proc. Swans. Creep Conf., University of Swansea and EPRI, Swansea, 2001.

  6. J.A. Francis, W. Mazur, H.K.D.H. Bhadeshia, Mater. Sci. Technol. 22 (12) (2006) 1387–1395.

    Article  Google Scholar 

  7. H. Cerjak and E. Letofsky: in Advanced Heat Resistance Steels for Power Generation, R. Viswanathan and J. Nutting, eds., The Institute of Materials, London, 1998, pp. 611–21.

  8. J.M. Brear, A. Fairman, C.J. Middleton, L. Polding, Key Eng. Mater. 171–174 (3) (2000) 5–42.

    Google Scholar 

  9. C.J. Middleton, J.M. Brear, R. Munson, and R. Vishwanathan: in Proc. 3rd Conf. Adv. Mater. Technol. Foss. Power Plant, R. Vishwanathan, W.T. Bakker, and J.D. Parker, eds., The Inst. Mater., London, 2001, pp. 69–78.

  10. E. Letofsky, H. Cerjak, I. Papst, and P. Warbichler: in Proc. 3rd Conf. Adv. Mater. Technol. Foss. Power Plant, R. Vishwanathan, W.T. Bakker, and J.D. Parker, eds., The Inst. Mater., London, 2001, pp. 133–42.

  11. F. Masuyama, M. Matsui, N. Komai, Key Eng. Mater. 171–174 (2000) 99–108.

    Article  Google Scholar 

  12. M. Matsui, M. Tabuchi, T. Watanabe, K. Kubo, J. Kinugawa, F. Abe, ISIJ Int. 41 (2001) S126–S130.

    Article  Google Scholar 

  13. M. Tabuchi, T. Watanabe, K. Kubo, M. Matsui, J. Kinugawa, F. Abe, Int. J. Press. Vessels Piping 78 (2001) 779–784.

    Article  Google Scholar 

  14. M. Tabuchi, M. Matsui, T. Watanabe, H. Hongo, K. Kubo, F. Abe, Mater. Sci. Res. Int. 9 (2003) 23–28.

    Google Scholar 

  15. F. Vivier: Ph.D. Thesis, Ecole des Mines de Paris, France, 2009.

  16. D. Jandova, J. Kasl, and V. Kanta: Proc. 2nd Int. ECCC Conf., Empa, Dübendorf, 2009.

  17. V. Gaffard: Ph.D. Thesis, Ecole des Mines de Paris, France, 2004.

  18. T. Watanbe, M. Tabuchi, M. Yamazaki, H. Hongo, T. Tanabe, Int. J. Press. Vessels Piping 83 (2006) 63–71.

    Article  Google Scholar 

  19. Vani Shankar, R. Sandhya, M.D. Mathew, Materials Science and Engineering A, 2011, Vol. 528, pp. 8428– 8437.

    Article  Google Scholar 

  20. ASTM E606-92: Standard Recommended Practice for Constant-Amplitude Low-Cycle Fatigue Testing, Annual Book of ASTM Standards, ASTM, Philadelphia, 1994, pp. 522–36.

  21. K. Bhanu Sankara Rao, M. Valsan, R. Sandhya, S. K. Ray, S. L. Mannan and P. Rodriguez, Int. J. Fatigue, 1985, Vol. 7, No. 3, pp. 141-147.

    Article  Google Scholar 

  22. Vani Shankar, M. Valsan, K. Bhanu Sankara Rao, R. Kannan, S.L. Mannan and S.D. Pathak, Materials Science and Engineering A, 2006, Vol. 437(2), pp. 413-422.

    Article  Google Scholar 

  23. Isamu Nonaka, Shoji Torihata, Shigemitu Kihara and Hideo Umaki, Materials at High Temperature, 1998, Vol. 15(2), pp. 69-73.

    Google Scholar 

  24. S. Kim, J.R. Weertman, Metall. Trans. A 19 (1988) 999–1007.

    Article  Google Scholar 

  25. B. Fournier, M. Sauzay, A. Renault, F. Barcelo, and A. Pineau: J. Nucl. Mater., 2009, vol. 386–388, pp. 71–74.

    Google Scholar 

  26. A.F. Armas, C. Petersen, R. Schmitt, M. Avalos, and I. Alvarez-Armas: J. Nucl. Mater., 2002, vol. 307–311, pp. 509–513.

    Article  Google Scholar 

  27. W.B. Jones: in Proc. ASM Int. Conf. Prod., Fabr., Prop. Appl. Ferritic Steels High Temp. Appl., A.K. Khare, ed., ASM, Warren, PA, 1981, pp. 221–35.

  28. P. Marmy, T. Kruml, J. Nucl. Mater. 377 (2008) 52–58.

    Article  Google Scholar 

  29. T. Goswami, Int. J. Fatigue 21 (1999) 55–76.

    Article  Google Scholar 

  30. T. Goswami, High Temp. Mater. Proc. 14 (1) (1995) 1.

    Article  Google Scholar 

  31. E.G. Ellison, A.F.J. Patterson, Proc. I Mech. Eng. 190 (1976) 321.

    Google Scholar 

  32. J.B. Conway, R.H. Stentz, and J.T. Berling: Fatigue, Tensile and Stress Relaxation Behavior of Stainless Steels, Technical Information Center, United States Atomic Energy Commission, Oak Ridge, 1975, pp. 33–81.

  33. S.-B. Lee, A.K. Miller, J. Eng. Mater. Technol. 117 (1995) 311.

    Article  Google Scholar 

  34. G.R. Halford, J.R. Johnson, and J.A. Brown: in: Advanced Earth-to-Orbit Propulsion Technology, R.J. Richmond and S.T. Wu, eds., NASA Conference Publication 2437, 1986, p. 1972.

  35. K. Yamaguchi, K. Kanazawa, Met. Trans. 11A (1980) 2019.

    Article  Google Scholar 

  36. H.J. Shi, G. Pluvinage, Int. J. Fatigue 16 (9) (1994) 549.

    Article  Google Scholar 

  37. V.S. Srinivasan, M. Valsan, K. Bhanu Sankara Rao, S.L. Mannan, B. Raj, Int. J. Fatigue 25 (12) (2003) 1327–1338.

    Article  Google Scholar 

  38. R. Sandhya, K. Bhanu Sankara Rao, S.L. Mannan, Mater. Sci. Eng. A 392 (2005) 326–334.

    Article  Google Scholar 

  39. C.R. Brinkman, J.P. Strizak, M.K. Brooker, C.E.J. Jaske, Nucl. Mater. 62 (2/3) (1976) 181.

    Article  Google Scholar 

  40. H. Teranishi, A.J. McEvily, Metall. Trans. A 10A (1979) 1806.

    Article  Google Scholar 

  41. J.M. Drapier and M.H. Hirchberg: AGARD AR, vol. 130, 1979.

  42. W.J. Plumbridge, M. Stanley, Int. J. Fatigue 8 (1986) 209.

    Article  Google Scholar 

  43. D.C. Lord, L.F. Coffin Jr, Metall. Trans. 4 (1973) 1647–1654.

    Article  Google Scholar 

  44. W.J. Plumbride, E.G. Ellison, Mater. Sci. Technol. 3 (1987) 706.

    Google Scholar 

  45. C.H. Wells, C.P. Sullivan, ASTM STP 459 (1969) 59.

    Google Scholar 

  46. M.Y. Nazmy, Metall. Trans. A 14A (1983) 449.

    Article  Google Scholar 

  47. M.Y. Nazmy, Scr. Met. 17 (1983) 491.

    Article  Google Scholar 

  48. Duquette, D. J. and M. Gell (1971) Effect of environment on the mechanism of stage I fatigue fracture. Met. Trans., A2(5), 1325-1331.

    Google Scholar 

  49. M. Gell and G.R. Leverant: in Fatigue at Elevated Temperatures, A.E. Carden, A.J. McEvily, and C.H. Wells, eds., ASTM STP 520, American Society for Testing and Materials, Philadelphia, 1973, pp. 37–67.

  50. McMahon, C. J. and L. F. Coffin (1970) Mechanisms of damage and fracture in high-temperature low-cycle fatigue of a cast nickel-based superalloy. Met. Trans., 1(12), 3443-3450.

    Google Scholar 

  51. S.D. Antolovich, S. Liu, and R. Baur: Metall. Trans. A, 1981, vol. 12A, pp. 473-481.

    Article  Google Scholar 

  52. K.D. Challenger, A.K. Miller, and C.R. Brinkman: J. Eng. Mater. Technol. (Trans. ASME), 1981, vol. 103, pp. 7–14.

  53. Challenger, K. D., A. K. Miller and R. L. Langdon (1981) Elevated-temperature fatigue with hold time in a low-alloy steel-a predictive correlation. J. Mat. Ener. Sys., 3, 51-61.

    Article  Google Scholar 

  54. Teranishi, H. and A.J. McEvily: in On Fatigue Crack Initiation and Propagation at Elevated Temperature. Advances in Fracture Research (Fracture 81), Cannes, France, vol. 5, D. Francois, ed., Pergamon Press, New York, 1982, 2439–47.

  55. H. Teranishi and A.J. McEvily: Metall. Trans. A, 1979, vol. 10A(11), pp. 1806–08.

    Article  Google Scholar 

  56. Aoto, K., R. Komine, F. Ueno, H. Kawasaki and Y. Wada (1994) Creep-fatigue evaluation of normalized and tempered modified 9Cr-1Mo, Nucl. Engn. Design, 153, 97-110.

    Article  Google Scholar 

  57. V. Shankar, V. Bauer, R. Sandhya, M.D. Mathew, and H.-J. Christ: J. Nucl. Mater., 2012, vol. 420(1–3), pp. 23–30.

    Article  Google Scholar 

  58. T. Ogata and A. Nitta: Proc. 30th Symp. Struct. Mater. High Temp., 1992, p. 149.

  59. B. Fournier, M. Sauzay, C. Caës, M. Noblecourt, M. Mottot, A. Bougault, V. Rabeau, J. Man, O. Gillia, P. Lemoine, A. Pineau, International journal of Fatigue, 2008, Vol. 30, No. 10-11, pp. 1797-1812.

    Article  Google Scholar 

  60. Y. Asada, M. Kitagawa, N. Shimakawa, T. Kodaira, T. Asayama and Y. Wada, Nuclear Engineering and Design, 1992, 133 (3), pp. 465-473.

    Article  Google Scholar 

  61. R. Mohrmann, T. Hollstein, and R. Westerheide: in Mater. Adv. Power Eng., Proc. 6th Liege Conf., Volume 5, Part 1, 1998.

  62. V. Bicego, P. Bontempi, R. Mariani, and N. Taylor: in Mater. Adv. Power Eng., Proc. 6th Liege Conf., Volume 5, Part 1, 1998.

  63. M. Tabuchi, T. Watanabe and K. Kubo, Key Engineering Materials, 2000, Vol. 171, pp. 521-528.

    Article  Google Scholar 

  64. I.A. Shibli: in Proc. Sixth Int. Charles Parsons Turbine Conf., 16–18 Sept., 2003, A. Strang, R.D. Conroy, W.M. Banks, M. Blackler, J. Leggett, G.M. McColvin, S. Simpson, M. Smith, F. Star, and R.W. Vanstone, eds., Trinity College Dublin, Ireland, 2003, pp. 261–79.

  65. I.A. Shibli, N. LeMatHamata, U. Gampe, and K. Nikbin: Proc. 2nd Int. HIDA Conf. Adv. Defect Assess. High Temp. Plant, MPA, Stuttgart, Germany, 2000, Paper S4-4.

  66. T. Asayama, S. Hasebe, Y. Hirakawa, and Y. Wada: in SMiRT-12/K, vol. L05/5, Kussamaul, ed., 1993, pp. 123–28.

  67. K. Kimura, H. Kushima, K. Sawada, Materials Science and Engineering A, 2009, Vol. 510–511, pp. 58–63.

    Article  Google Scholar 

  68. B.K. Choudhary, S. Saroja, K.B.S. Rao, S. L. Mannan: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2825–2834.

    Article  Google Scholar 

  69. B.J. Caneand and R.S. Fidler: in Proc. Int. Conf. Ferritic Steels Fast React. Steam Gener., 1977, vol. 1, S.F. Pugh and E.A. Little, eds., British Nuclear Energy Society, London, 1978, pp. 193–99.

  70. E. Barker, G. J. Lloyd and R. Pilkington (1986) Creep Fracture of a 9Cr-1Mo steel. Mater Sci Engg., 84(1-2), 49-64.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are thankful to Sri S. C. Chetal, Director, IGCAR, Kalpakkam, for his constant support and encouragement. The authors also thank Dr A. K. Bhaduri, Associate Director, Materials Development and Technology Group, IGCAR, for many useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vani Shankar.

Additional information

Manuscript submitted January 18, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shankar, V., Mariappan, K., Sandhya, R. et al. Effect of Application of Short and Long Holds on Fatigue Life of Modified 9Cr-1Mo Steel Weld Joint. Metall Mater Trans A 45, 1390–1400 (2014). https://doi.org/10.1007/s11661-013-2108-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2108-x

Keywords

Navigation