Skip to main content
Log in

High Temperature Low Cycle Fatigue of IN 738 and Application of Strain Range Partitioning

  • Published:
Metallurgical Transactions A Aims and scope Submit manuscript

Abstract

Effects of strain rate and strain wave shape on high temperature low cycle fatigue life of cast IN 738 nickel-base superalloy were investigated at 1123 K. Intergranular crack initiation and mixed crack propagation were observed mainly in slow-fast saw tooth wave, slow-slow triangular wave, and in truncated wave with hold time in tension and in both tension and compression tests. A reduction in the fatigue life of the specimens tested under these wave shapes, compared to those under fast-fast type of triangular wave shape, corresponded with a variation in the fracture mode. On the basis of a defined crack initiation criterion the test results were analyzed by the strain range partitioning method proposed by Manson, Halford, and Hirschberg. The observation that the wave shape effect on life was very sensitive when examined from the elastic strain range viewpoint suggested that a life prediction method that involves stresses may also be worthy of consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ASME Boiler and Pressure Vessel Code, Case N-47, ASME, New-York, NY, 1981.

  2. U. S. Lindholm and D. L. Davidson:Fatigue at Elevated Temperature, ASTM STP 520, p. 473, 1973.

  3. D. C. Lord and L. F. Coffin, Jr.:Metall. Trans., 1973, vol. 4, pp. 1647–54.

    CAS  Google Scholar 

  4. W. J. Ostergren:J. Testing Evaluation, 1976, vol. 4, pp. 327–39.

    Article  CAS  Google Scholar 

  5. S. D. Antolovich, S. Lin, and R. Baur:Metall. Trans. A, 1981, vol. 12A, pp. 473–81.

    Google Scholar 

  6. S. D. Antolovich, E. Rosa, and A. Pineau:Mat. Science and Engineering, 1981, vol. 47, pp. 47–57.

    Article  CAS  Google Scholar 

  7. M. Y. Nazmy:Mat. Science and Engineering, 1982, vol. 55, pp. 231–37.

    Article  Google Scholar 

  8. S. D. Antolovich, P. Domas, and J. L. Strudel:Metall. Trans. A, 1979, vol. 10A, pp. 1859–68.

    CAS  Google Scholar 

  9. C. J. McMahon and L. F. Coffin, Jr.:Metall. Trans., 1970, vol. 1, pp. 3443–50.

    CAS  Google Scholar 

  10. L. F. Coffin, Jr.:Fatigue At Elevated Temperature, ASTM STP 520, 1973, p. 5.

  11. L. F. Coffin, Jr.:Metall. Trans., 1974, vol. 5, pp. 1053–60.

    CAS  Google Scholar 

  12. C. S. Kortovich and A. A. Sheinker: Proc. AGARD Conf. “The Characterization of Low Cycle High Temperature Fatigue by the Strain Range Partitioning Method,” Conf. Proc. 243, Advisory Group for Aeronautical Research and Development, North Atlantic Treaty Organization, 1978, p. 1.

  13. S. S. Manson:Fatigue At Elevated Temperature, ASTM STP 520, 1973, p. 744.

  14. L. F. Coffin, Jr.Proc. 4th Int. Conf. on Fracture, Fracture 1977, D. M. R. Taplin, ed., University of Waterloo, Canada, 1977, vol. 1, pp. 263–92.

    Google Scholar 

  15. S. Majumdar and P. S. Maiya:Proc. ASME-MPC Symposium on Creep-Fatigue Interaction, R. M. Curran, ed., MPC-3, ASME, New York, NY, 1976, p. 323.

    Google Scholar 

  16. J. L. Chaboche:Nuclear Engineering and Design.1981, vol. 64, pp. 233–47.

    Article  Google Scholar 

  17. S. S. Manson, G. R. Halford, and M. H. Hirschberg: NASA TMX-67838, 1971.

  18. G. R. Halford, M. H. Hirschberg, and S. S. Manson:Fatigue at Elevated Temperature, ASTM STP 520, 1973, p. 658.

  19. S. S. Manson: Proc. AGARD Conf. “The Characterization of Low Cycle High Temperature Fatigue by the Strain Range Partitioning Method“, Conf. Proc. 243, 1978, p. k.

  20. G. R. Halford and A. J. Nachtigall: Proc. AGARD Conf. “The Characterization of Low Cycle High Temperature Fatigue by the Strain Range Partitioning Method,” Conf. Proc. 234, 1978, p. 2.

  21. R. A. Stevens and P. E. J. Flewitt:Acta Met.,1981, vol. 29, pp. 867–82.

    Article  CAS  Google Scholar 

  22. R. B. Scarlin:Proc. 4th Int. Conf. on Fracture, Fracture 1977, D. M. R. Taplin, ed., University of Waterloo, Canada, 1977, vol. 2, pp. 849–57.

    Google Scholar 

  23. G. R. Halford: Proc. AGARD Conf. “The Characterization of Low Cycle High Temperature Fatigue by the Strain Range Partitioning Method“, Conf. Proc. 243, 1978, p. D4-6.

  24. J. H. Underwood and J. F. Throop:Part-Through Crack Fatigue Life Prediction, ASTM STP 687, 1977, p. 195.

  25. A. Witt, R. König, and C. Eckard: Final report on “Niedrigwechsel-festigkeit von Gasturbinenwerkstoffen“, Klöckner-Humboldt-Deutz AG, Oberursel, W. Germany, 1980.

    Google Scholar 

  26. S. Yoshida, K. Kanazawa, K. Yamaguchi, M. Sasaki, K. Kobayashi, and M. Sato:Trans. NRIM, 1977, vol. 19, pp. 247–72.

    CAS  Google Scholar 

  27. K. Yamaguchi and K. Kanazawa:Metall. Trans. A, 1980, vol. 11A, pp. 2019–27.

    CAS  Google Scholar 

  28. M. F. Day and G. B. Thomas: Proc. AGARD Conf. “The Characterization of Low Cycle High Temperature Fatigue by the Strain Range Partitioning Method”, Conf. Proc. 243, 1978, p. 10.

  29. W. Hoffelner and C. Wüthrich: Brown Boveri Research Center Report KLR 32C, Baden, Switzerland, 1981.

  30. M. Y. Nazmy:Fatigue of Engineering Materials and Structures, 1981, vol. 4, pp. 253–61.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmy, M.Y. High Temperature Low Cycle Fatigue of IN 738 and Application of Strain Range Partitioning. Metall Trans A 14, 449–461 (1983). https://doi.org/10.1007/BF02644222

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02644222

Keywords

Navigation