Skip to main content

Advertisement

Log in

Microstructures and High-Temperature Mechanical Properties of a Martensitic Heat-Resistant Stainless Steel 403Nb Processed by Thermo-Mechanical Treatment

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Thermo-mechanical treatments (TMT) at different rolling deformation temperatures were utilized to process a martensitic heat-resistant stainless steel 403Nb containing 12 wt pct Cr and small additions of Nb and V. Microstructures and mechanical properties at room and elevated temperatures were characterized by scanning electron microscopy, transmission electron microscopy, and hardness, tensile, and creep tests. The results showed that high-temperature mechanical behavior after TMT can be greatly improved and microstructures with refined martensitic lath and finely dispersed nanosized MX carbides could be produced. The particle sizes of M23C6 and MX carbides in 403Nb steel after conventional normalizing and tempering (NT) treatments are about 50 to 160 and 10 to 20 nm, respectively, while those after TMT at 1123 K (850 °C) and subsequent tempering at 923 K (650 °C) for 2 hours reach about 25 to 85 and 5 to 10 nm, respectively. Under the condition of 260 MPa and 873 K (600 °C), the tensile creep rupture life of 403Nb steel after TMT at 1123 K (850 °C) is 455 hours, more than 3 times that after conventional NT processes. The mechanisms for improving mechanical properties at elevated temperature were analyzed in association with the existence of finely dispersed nanosized MX particles within martensitic lath. It is the nanosized MX particles having the higher stability at elevated temperature that assist both dislocation hardening and sub-grain hardening for longer duration by pinning the movement of dislocations and sub-grain boundary migration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Rojas, J. Garcia, O. Prat, L. Agudo, C. Carrasco, G. Sauthoff, and A.R. Kaysser-Pyzalla: Mater. Sci. Eng. A, 2011, vol. 528, pp. 1372-81.

    Article  Google Scholar 

  2. J. Hald: Int. J. Pressure Vessels and Piping, 2008, vol. 85, pp. 30-37.

    Article  Google Scholar 

  3. Mats Hättestrand, Martin Schwind, and Hans-Olof Andrén: Mater. Sci. Eng. A, 1998, vol. 250, pp. 27-36.

    Article  Google Scholar 

  4. F. Masuyama: ISIJ Int., 2001, vol. 41, pp. 612-25.

    Article  Google Scholar 

  5. H. Ghassemi-Armaki, R.P. Chen, K. Maruyama, M. Yoshizawa, and M. Igarashi: Mater. Lett., 2009, vol.63, pp. 2423-25.

    Article  Google Scholar 

  6. K. Maruyama, K. Sawada, and J. Koike: ISIJ Int., 2001, vol. 41, pp. 641-53.

    Article  Google Scholar 

  7. H.S. Bao, S.C. Cheng, Z.D. Liu, and S.P. Tan: J. Iron Steel Res. Int., 2010, vol. 17, pp. 67-73.

    Article  Google Scholar 

  8. J. Pešička, A. Aghajani, Ch. Somsen, A. Hartmaier, and G. Eggeler: Scripta Mater., 2010, vol. 62, pp. 353-56.

    Article  Google Scholar 

  9. A. Aghajani, Ch. Somsen, and G. Eggeler: Acta Mater., 2009, vol. 57, pp. 5093-106.

    Article  Google Scholar 

  10. S. Straub, P. Polcik, and W. Blum: in Strength of Materials, H. Oikawa, K. Maruyama, S. Takeuchi, and M. Yamaguchi, eds., The Japan Institute of Metals, Sendai, 1994, pp. 623–26.

  11. M. Taneike, F. Abe, and K. Sawada: Nature, 2003, vol. 424, pp. 294-96.

    Article  Google Scholar 

  12. Åsa Gustafson and Mats Hättestrand: Mater. Sci. Eng. A, 2002, vol. 333, pp. 279-86.

    Article  Google Scholar 

  13. F. Abe, M. Taneike, and K. Sawada: Int. J. Pressure Vessels Piping, 2007, vol. 84, pp. 3-12.

    Article  Google Scholar 

  14. R.L. Klueh, N. Hashimoto, and P. J. Maziasz: Scripta Mater., 2005, vol. 53, pp. 275-80.

    Article  Google Scholar 

  15. S.N. Prasad and D.S. Sarma: Mater. Sci. Eng. A, 2005, vol. 399, pp. 161-72.

    Article  Google Scholar 

  16. M. Moallemi, A. Kermanpur, A. Najafizadeh, A. Rezaee, and H. Samaei Baghbadorani: Mater. Lett., 2012, vol. 89, pp. 22-24.

    Article  Google Scholar 

  17. S.K. Dhua, D. Mukerjee, and D.S. Sarma: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 241-53.

    Article  Google Scholar 

  18. A. Munita, R.E. Ricker, D.J. Pitchure, and G. Kimmel: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2403-13.

    Article  Google Scholar 

  19. R. L. Klueh, N. Hashimoto, and P. J. Maziasz: J. Nuclear Mater., 2007, vol. 367-370, pp. 48-53.

    Article  Google Scholar 

  20. S. Hollner, B. Fournier, J. Le Pendu, T. Cozzika, I. Tournié, J.-C. Brachet, and A. Pineau: J. Nuclear Mater., 2010, vol. 405, pp. 101-108.

    Article  Google Scholar 

  21. J. Pešička, R. Kužel, A. Dronhofer, and G. Eggeler: Acta Mater., 2003, vol. 51, pp. 4847-62.

    Article  Google Scholar 

  22. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu: J. Mater. Sci. Tech., 2011, vol. 27, pp. 913-19.

    Article  Google Scholar 

  23. Z.Y. Zeng, L.Q. Chen, F.X. Zhu, and X.H. Liu: Acta Metall. Sin. (Engl. Lett.), 2011, vol. 24, pp. 381–89.

  24. A. Kostka, K.-G. Tak, R.J. Hellmig, Y. Estrin, and G. Eggeler: Acta Mater., 2007, vol. 55, pp. 539-50.

    Article  Google Scholar 

  25. F. Abe, T.U. Kern, and R. Viswanathan: in Creep-resistant Steels, Woodhead Publishing Limited, Cambridge, 2008.

Download references

Acknowledgments

Financial support from the National Natural Science Foundation of China (Grant No. 51271051, 50634030), the National High Technology Research and Development Program (2012AA03A508), and the Fundamental Research Funds for the Central Universities of China (Grant No. N100507003) is greatly appreciated. The authors wish to thank Prof. Tian Sugui and Dr. Xie Jun, Shenyang University of Technology, for their support in the creep test.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liqing Chen.

Additional information

Manuscript submitted January 27, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, L., Zeng, Z., Zhao, Y. et al. Microstructures and High-Temperature Mechanical Properties of a Martensitic Heat-Resistant Stainless Steel 403Nb Processed by Thermo-Mechanical Treatment. Metall Mater Trans A 45, 1498–1507 (2014). https://doi.org/10.1007/s11661-013-2105-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2105-0

Keywords

Navigation