Skip to main content
Log in

Effects of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 13%Cr-4%Ni Martensitic Stainless Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The present work investigates the effects of thermal cycling heat treatment (TCHT) on microstructure and mechanical properties of 13%Cr-4%Ni martensitic stainless steel (13-4MSS). As-received 13-4 MSS was subjected to three different thermal cycling schedules by using a thermo-mechanical simulator (Gleeble 3800). The evolved microstructures were studied at three cycles for each thermal cycling schedule with the help of optical, scanning electron microscopy, x-ray analysis, and transmission electron microscopy. Hardness and notched tensile tests were conducted to further characterize the as-received and processed specimens. This cyclic treatment raised the hardness to 413 HV (for TCHT at 950 °C) from 274 HV (for as-received). A 42% (for TCHT at 950 °C) and 39% (for TCHT at 1050 °C) hike in ultimate tensile strength (UTS) with a slight decline in ductility was observed as compared to the UTS and ductility of as-received steel. The evolved microstructure, dislocation density, and the refinement of martensitic blocks attributed to the enhanced hardness and UTS. The coarsening of laths (observed at 1050 °C) and bimodal lath structure (observed at 950 °C) were also found to control the mechanical properties of the present steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. G. Prakash and S.K. Nath, Studies on Enhancement of Silt Erosion Resistance of 13/4 Martensitic Stainless Steel by Low-Temperature Salt Bath Nitriding, J. Mater. Eng. Perform., 2018, 27(7), p 3206–3216

    CAS  Google Scholar 

  2. K. Nakazawa, Y. Kawabe, and S. Muneki, Grain Refinement of High-Strength Maraging Steels Through Cyclic Heat Treatment, Mater. Sci. Eng., 1978, 33(1), p 49–56

    CAS  Google Scholar 

  3. B.R. Kumar, S. Sharma, B.P. Kashyap, and N. Prabhu, Ultrafine Grained Microstructure Tailoring in Austenitic Stainless Steel for Enhanced Plasticity, Mater. Des., 2015, 68, p 63–71

    Google Scholar 

  4. J.N. Wang, J. Yang, Q. Xia, and Y. Wang, On the Grain Size Refinement of TiAl Alloys by Cyclic Heat Treatment, Mater. Sci. Eng., A, 2002, 329–331, p 118–123

    Google Scholar 

  5. P. Payson, W.L. Hodapp, and J. Leeder, The Spheroidizing of Steel by Isothermal Transformation, Trans. Am. Soc. Met., 1940, 28, p 306

    CAS  Google Scholar 

  6. A. Mishra, C. Mondal, and J. Maity, Microstructural Modifications in AISI, 1080 Eutectoid Steel Under Combined Cyclic Heat Treatment, Steel Res. Int., 2016, 87(4), p 424–435

    CAS  Google Scholar 

  7. A. Mishra and J. Maity, Structure-Property Correlation of AISI, 1080 Steel Subjected to Cyclic Quenching Treatment, Mater. Sci. Eng., A, 2015, 646, p 169–181

    CAS  Google Scholar 

  8. S. Mishra, A. Mishra, B.K. Show, and J. Maity, Simultaneous Enhancement of Ductility and Strength in AISI, 1080 Steel Through a Typical Cyclic Heat Treatment, Mater. Sci. Eng., A, 2017, 688, p 262–271

    CAS  Google Scholar 

  9. S. Maji, A.R. Subhani, B.K. Show, and J. Maity, Effect of Cooling Rate on Microstructure and Mechanical Properties of Eutectoid Steel Under Cyclic Heat Treatment, J. Mater. Eng. Perform., 2017, 26, p 3058–3070

    CAS  Google Scholar 

  10. Z.Q. Lv, B. Wang, Z.H. Wang, S.H. Sun, and W.T. Fu, Effect of Cyclic Heat Treatments on Spheroidizing Behavior of Cementite in High Carbon Steel, Mater. Sci. Eng., A, 2013, 574, p 143–148

    CAS  Google Scholar 

  11. A. Mishra, A. Saha, and J. Maity, Development of High Strength Ductile Eutectoid Steel Through Cyclic Heat Treatment Involving Incomplete Austenitization Followed by Forced Air Cooling, Mater. Charact., 2016, 114, p 277–288

    CAS  Google Scholar 

  12. A. Mishra, C. Mondal, and J. Maity, Effect of Combined Cyclic Heat Treatment on AISI, 1080 Steel: Part II-Mechanical Property Evaluation, Steel Res. Int., 2017, 88, p 1–10

    CAS  Google Scholar 

  13. Z.-Q. Lü, H.-F. Zhang, Q. Meng, Z.-H. Wang, and W.-T. Fu, Effect of Cyclic Annealing on Microstructure and Mechanical Properties of Medium Carbon Steel, J. Iron. Steel Res. Int., 2016, 23(2), p 145–150

    Google Scholar 

  14. A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Microstructural Modifications and Changes in Mechanical Properties During Cyclic Heat Treatment of 0.16% Carbon Steel, Mater. Sci. Eng., A, 2012, 534, p 465–475

    CAS  Google Scholar 

  15. A. Saha, D.K. Mondal, K. Biswas, and J. Maity, Development of High Strength Ductile Hypereutectoid Steel by Cyclic Heat Treatment Process, Mater. Sci. Eng., A, 2012, 541, p 204–215

    CAS  Google Scholar 

  16. A. Saha, D.K. Mondal, and J. Maity, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 0.6 wt% Carbon Steel, Mater. Sci. Eng., A, 2010, 527(16–17), p 4001–4007

    Google Scholar 

  17. B. Smoljan, An Analysis of Combined Cyclic Heat Treatment Performance, J. Mater. Process. Technol., 2004, 155–156(1–3), p 1704–1707

    Google Scholar 

  18. J.Y. Koo and G. Thomas, Thermal Cycling Treatments and Microstructures for Improved Properties of Fe-0.12% C-0.5% Mn Steels, Mater. Sci. Eng., 1976, 24(2), p 187–198

    CAS  Google Scholar 

  19. H.-Y. Li, M.-S. Han, D.-W. Li, J. Li, and D.-C. Xu, Effect of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 50CrV4 Steel, J. Cent. South Univ., 2015, 22(2), p 409–415

    CAS  Google Scholar 

  20. Z. Lv, X.-P. Ren, Z.-H. Li, Z.-M. Lu, and M.-M. Gao, Effects of Two Different Cyclic Heat Treatments on Microstructure and Mechanical Properties of Ti-V Microalloyed Steel, Mater. Res., 2015, 18(2), p 304–312

    CAS  Google Scholar 

  21. B.R. Kumar, B. Mahato, S. Sharma, and J.K. Sahu, Effect of Cyclic Thermal Process on Ultrafine Grain Formation in AISI, 304L Austenitic Stainless Steel, Metall. Mater. Trans. A, 2009, 40A, p 3226–3234

    Google Scholar 

  22. B.R. Kumar and D. Raabe, Tensile Deformation Characteristics of Bulk Ultrafine-Grained Austenitic Stainless Steel Produced by Thermal Cycling, Scr. Mater., 2012, 66(9), p 634–637

    Google Scholar 

  23. S. Tu, X. Ren, B. Nyhus, O.M. Akselsen, J. He, and Z. Zhang, A Special Notched Tensile Specimen to Determine the Flow Stress-Strain Curve of Hardening Materials Without Applying the Bridgman Correction, Eng. Fract. Mech., 2018, 179, p 225–239

    Google Scholar 

  24. S. Kumar, G.P. Chaudhari, S.K. Nath, and B. Basu, Effect of Preheat Temperature on Weldability of Martensitic Stainless Steel, Mater. Manuf. Process., 2012, 27(12), p 1382–1386

    CAS  Google Scholar 

  25. Z.L. Zhang, M. Hauge, C. Thaulow, and J. Ødegård, A Notched Cross Weld Tensile Testing Method for Determining True Stress-Strain Curves for Weldments, Eng. Fract. Mech., 2002, 69(3), p 353–366

    Google Scholar 

  26. V. Olden and Z.L. Zhang, Material Characterisation for Ductile Fracture by Testing of Notched Tensile Specimens, (Cracow), ECF14, 2002, https://www.gruppofrattura.it/ocs/index.php/esis/ECF14/schedConf/presentations. Accessed 17 April 2019

  27. B. Kishor, G.P. Chaudhari, and S.K. Nath, Slurry Erosion of Thermo-Mechanically Processed 13Cr4Ni Stainless Steel, Tribol. Int., 2016, 93, p 50–57

    CAS  Google Scholar 

  28. Y. Wang, M. Chen, F. Zhou, and E. Ma, High Tensile Ductility in a Nanostructured Metal, Nature, 2002, 419, p 912–915

    CAS  Google Scholar 

  29. F. Ren, F. Chen, and J. Chen, Investigation on Dynamic Recrystallization Behavior of Martensitic Stainless Steel, Adv. Mater. Sci. Eng., 2014, 2014, p 1–16

    Google Scholar 

  30. L.F. Alvarez, C. Garcia, and V. Lopez, Continuous Cooling Transformations in Martensitic Stainless Steels, ISIJ Int., 1994, 34(6), p 516–521

    CAS  Google Scholar 

  31. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-Del-Castillo, Understanding the Factors Controlling the Hardness in Martensitic Steels, Scr. Mater., 2016, 110, p 96–100

    CAS  Google Scholar 

  32. T. Ohmura, T. Hara, and K. Tsuzaki, Relationship Between Nanohardness and Microstructures in High-Purity Fe-C As-Quenched and Quench-Tempered Martensite, J. Mater. Res., 2003, 18(6), p 1465–1470

    CAS  Google Scholar 

  33. A. Akhiate, E. Braud, D. Thibault, and M. Brochu, Carbon Content and Heat Treatment Effects on Microstructures and Mechanical Properties of 13% Cr–4% Ni Martensitic Stainless Steel, Metall. Mater. Trans. B, 2014, p 5000–3000.

  34. H.J. Amarendra, P. Kalhan, G.P. Chaudhari, S.K. Nath, and S. Kumar, Slurry Erosion Response of Heat Treated 13Cr-4Ni Martensitic Stainless Steel, Mater. Sci. Forum, 2012, 710, p 500–505

    CAS  Google Scholar 

  35. V. Olden, Z.L. Zhang, E. Østby, B. Nyhus, and C. Thaulow, Notch tensile testing of high strength steel weldments, in 2nd International Symposium on High Strength Steel (Verdal, Norway, 2002), p. 1–8.

  36. M.A. Maleque, Y.M. Poon, and H.H. Masjuki, The Effect of Intercritical Heat Treatment on the Mechanical Properties of AISI, 3115 Steel, J. Mater. Process. Technol., 2004, 154, p 482–487

    Google Scholar 

  37. L. Morsdorf, O. Jeannin, D. Barbier, M. Mitsuhara, D. Raabe, and C.C. Tasan, Multiple Mechanisms of Lath Martensite Plasticity, Acta Mater., 2016, 121, p 202–214

    CAS  Google Scholar 

  38. S. Zhang, P. Wang, D. Li, and Y. Li, Investigation of the Evolution of Retained Austenite in Fe-13%Cr-4%Ni Martensitic Stainless Steel during Intercritical Tempering, Mater. Des., 2015, 84, p 385–394

    CAS  Google Scholar 

  39. M. Moeser, in Fractography with the SEM (Failure Analysis), ed. by J. Bethge and H. Heydnreich (Elsevier Science Ltd, Amsterdam, 1987). http://www.martin-moeser.de. Accessed 13 May 2019

  40. H. Kitahara, R. Ueji, N. Tsuji, and Y. Minamino, Crystallographic Features of Lath Martensite in Low-Carbon Steel, Acta Mater., 2006, 54, p 1279–1288

    CAS  Google Scholar 

  41. S. Morito, H. Yoshida, T. Maki, and X. Huang, Effect of Block Size on the Strength of Lath Martensite in Low Carbon Steels, Mater. Sci. Eng., A, 2006, 440, p 237–240

    Google Scholar 

  42. C. Zhang, Q. Wang, J. Ren, R. Li, M. Wang, F. Zhang, and K. Sun, Effect of Martensitic Morphology on Mechanical Properties of an As-Quenched and Tempered 25CrMo48V Steel, Mater. Sci. Eng., A, 2012, 534, p 339–346

    CAS  Google Scholar 

  43. J.S.J. Hargreaves, Some Considerations Related to the Use of the Scherrer Equation in Powder X-Ray Diffraction as Applied to Heterogeneous Catalysts, Catal. Struct. React., 2016, 2(1-4), p 33–37

    CAS  Google Scholar 

  44. G.K. Williamson and R.E. Smallman, III, Dislocation Densities in Some Annealed and Cold-Worked Metals from Measurements on the X-Ray Debye-Scherrer Spectrum, Philos. Mag., 1956, 1(1), p 34–46

    CAS  Google Scholar 

  45. G. Krauss, Steels: Processing, Structure, and Performance, ASM International, Cleveland, 2005

    Google Scholar 

  46. S. Morito, J. Nishikawa, and T. Maki, Dislocation Density Within Lath Martensite in Fe–C and Fe–Ni Alloys, ISIJ Int., 2003, 43(9), p 1475–1477

    CAS  Google Scholar 

  47. E.I. Galindo-Nava and P.E.J. Rivera-Díaz-del-Castillo, A Model for the Microstructure Behaviour and Strength Evolution in Lath Martensite, Acta Mater., 2015, 98, p 81–93

    CAS  Google Scholar 

  48. H. Nakagawa and T. Miyazaki, Effect of Retained Austenite on the Microstructure and Mechanical Properties of Martensitic Precipitation Hardening Stainless Steel, J. Mater. Sci., 1999, 34(16), p 3901–3908

    CAS  Google Scholar 

  49. S. Morito, K. Oh-ishi, K. Hono, and T. Ohba, Carbon Enrichment in Retained Austenite Films in Low Carbon Lath Martensite Steel, ISIJ Int., 2011, 51(7), p 1200–1202

    CAS  Google Scholar 

  50. X.D. Wang, N. Zhong, Y.H. Rong, T.Y. Hsu, Z.Y. Xu, and L. Wang, Novel Ultrahigh-Strength Nanolath Martensitic Steel by Quenching–Partitioning–Tempering Process, J. Mater. Res., 2009, 24(1), p 260–267

    CAS  Google Scholar 

  51. R. Bhadeshia and H. Honeycombe, Steels: Microstructure and Properties, 3rd ed., Butterworth-Heinemann, Oxford, 2006

    Google Scholar 

  52. C. Du, J.P.M. Hoefnagels, R. Vaes, and M.G.D. Geers, Block and Sub-block Boundary Strengthening in Lath Martensite, Scr. Mater., 2016, 116, p 117–121

    CAS  Google Scholar 

  53. B. Hutchinson and J. Hagstro, Microstructures and Hardness of As-Quenched Martensites (0.1–0.5%C), Acta Mater., 2011, 59, p 5845–5858

    CAS  Google Scholar 

  54. Z. Jiang, Z. Guan, and J. Lian, Effects of Microstructural Variables on the Deformation Behaviour of Dual-Phase Steel, Mater. Sci. Eng., A, 1995, 190, p 55–64

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Nath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, J., Nath, S.K. Effects of Cyclic Heat Treatment on Microstructure and Mechanical Properties of 13%Cr-4%Ni Martensitic Stainless Steel. J. of Materi Eng and Perform 29, 2478–2490 (2020). https://doi.org/10.1007/s11665-020-04787-w

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04787-w

Keywords

Navigation