Skip to main content
Log in

Anisotropy of Dynamic Compressive Properties of Non-Heat-Treating Cold-Heading-Quality Steel Bars

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, a non-heat-treating cold-heading-quality steel bar was fabricated by cold drawing of a rolled bar, and anisotropic mechanical properties of the as-rolled and cold-drawn bars were investigated by quasistatic and dynamic compressive tests of 0 deg (longitudinal)-, 45 deg-, and 90 deg (transverse)-orientation specimens. Under the dynamic compressive loading, the trend of strength variation was similar to that of the quasistatic compressive loading, while the strength level was considerably increased by the strain rate hardening effect. Stress–strain curves of the cold-drawn bar specimens showed the nearly same strain hardening behavior, irrespective of specimen orientation and strain rate, but the yield stress and compressive flow stress increased in the order of the 0 deg-, 90 deg-, and 45 deg-orientation specimens. In the 45 deg- and 90 deg-orientation specimens, the pearlite bands had the stronger resistance to the stress acting on the maximum shear stress plane than in the 0 deg-orientation specimens, thereby resulting in the higher strengths. In some dynamically compressed specimens, pearlite bands were dissolved to form bainitic microstructures. Locations of these bainitic microstructures were well matched with hemispherical-shaped heat-trap zones, which confirmed that bainitic microstructures were formed by the temperature rise occurring during the dynamic compressive loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A. Iwama and I. Nomura: U.S. Patent 5,362,338, 1994.

  2. A. Inada, N. Yoshihara, and N. Ibaraki: U.S. Patent 6,206,984 B1 (Mar. 27, 2001).

  3. K.-H. Kim, S.-D. Park, J.-H. Kim, and C.-M. Bae: Met. Mater. Int., 2012, vol. 18, pp. 917-21.

    Article  Google Scholar 

  4. C. Jing, D.-W. Suh, C.-S. Oh, Z. Wang, and S.-J. Kim: Met. Mater. Int., 2007, vol. 13, pp. 13-19.

    Article  Google Scholar 

  5. H.-B. Ryu, J.G. Speer, and J.P. Wise: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2811-16.

    Article  Google Scholar 

  6. C.G. Lee, S.-J. Kim, T.-H. Lee, and S. Lee: Mater. Sci. Eng., 2004, vol. A371, pp. 16-23.

    Article  Google Scholar 

  7. D.A. Curry: Nature, 1978, vol. 276, pp. 50-51.

    Article  Google Scholar 

  8. R.O. Ritchie, J.F. Knott, and J.R. Rice: J. Mech. Phys. Solids, 1873, vol. 21, pp. 395-410.

    Article  Google Scholar 

  9. D.A. Curry and J.F. Knott: Met. Sci., 2006, vol. 437, pp. 335-43.

    Google Scholar 

  10. E. Pessard, F. Morel, and A. Morel: Adv. Eng. Mater., 2009, vol. 11, pp. 732-35.

    Article  Google Scholar 

  11. S.I. Kim and Y. Lee: Met. Mater. Int., 2012, vol. 18, pp. 735-44.

    Article  Google Scholar 

  12. O.A. Gunbina, V.N. Kopylov, I.N. Razuvaeva, and A.S. Shibanov: Met. Sci. Heat Treat., 1993, vol. 35, pp. 682-86.

    Article  Google Scholar 

  13. M.O. Lai and H.S. Fong: J. Mater. Sci. Lett., 1989, vol. 8, pp. 1257-59.

    Article  Google Scholar 

  14. L. Caballero, J.M. Atienza, and M. Elices: Met. Mater. Int., 2011, vol. 17, pp. 899-910.

    Article  Google Scholar 

  15. V.P. Gorbatenko and A.V. Lukin: Steel Transl., 2010, vol. 40, pp. 923-27.

    Article  Google Scholar 

  16. Y.J. Park and I.M. Bernstein: Metall. Trans. A, 1979, vol. 10A, pp. 1653-64.

    Article  Google Scholar 

  17. D.A. Porter and K.E. Easterling: Acta Metall., 1978, vol. 26, pp. 1405-22.

    Article  Google Scholar 

  18. H. Kim, M. Kang, H.J. Jung, H.S. Kim, C.M. Bae, and S. Lee: Mater. Sci. Eng., 2013, vol. A571, pp. 38-48.

    Article  Google Scholar 

  19. G.E. Dieter: Mechanical Metallurgy, SI Metric, McGraw-Hill Book Co., New York, 1976, pp. 616–50.

  20. E.D.H. Davies and S.C. Hunter: J. Mech. Phys. Solids, 1963, vol. 11, pp. 155-79.

    Article  Google Scholar 

  21. W. Chen and B. Song: Split Hopkinson (Kolsky) Bar—Design, Testing, and Applications, Springer, New York, 2011.

    Book  Google Scholar 

  22. S. Shanmugama, R.D.K. Misra, T. Mannering, D. Panda, and S.F. Jansto: Mater. Sci. Eng., 2006, vol. A437, pp. 436-45.

    Article  Google Scholar 

  23. S. Shanmugama, N.K. Ramisetti, R.D.K. Misra, T. Mannering, D. Panda, and S.F. Jansto: Mater. Sci. Eng., 2007, vol. A460-A461, pp. 335-43.

    Article  Google Scholar 

  24. T. Yamane, K. Hisayuki, Y. Kawazu, T. Takahashi, and Y. Kimura: J. Mater. Sci., 2002, vol. 37, pp. 3875-79.

    Article  Google Scholar 

  25. R. Anumolu, B. Ravi Kumar, R.D.K. Misra, T. Mannering, D. Panda, and S.F. Jansto: Mater. Sci. Eng., 2008, vol. A491, pp. 55–61.

  26. W.Y. Choo and J.Y. Lee: Metall. Trans. A, 1982, vol. 13A, pp. 135-40.

    Article  Google Scholar 

  27. J. Languillaume, G. Kapelski, and B. Baudelet: Acta Mater., 1997, vol. 45, pp. 1201-12.

    Article  Google Scholar 

  28. J.M. Hyzak and I.M. Bernstein: Metall. Trans. A, 1976, vol. 7A, pp. 1217-24.

    Article  Google Scholar 

  29. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 867-76.

    Google Scholar 

  30. K. Lee, S.-B. Lee, S.-K. Lee, and S. Lee: Mater. Sci. Eng., 2010, vol. A527, pp. 1875-81.

    Article  Google Scholar 

  31. C.G. Lee, D. Kwon, and S. Lee: Scripta Metall., 1994, vol. 30, pp. 197-202.

    Article  Google Scholar 

  32. A.G. Odeshi, S. Al-ameeri, and M.N. Bassim: J. Mater. Process. Technol., 2005, vol. 162-163, pp. 385-91.

    Article  Google Scholar 

  33. C.-S. Huang, S.-H. Wang, W.-S. Lee, T.-H. Chen, and C. Lien: Scripta Mater., 2005, vol. 52, pp. 843-49.

    Article  Google Scholar 

  34. K.A. Hartley, J. Duffy, and R.H. Hawley: J. Mech. Phys. Solids, 1987, vol. 35, pp. 283-301.

    Article  Google Scholar 

  35. F.B. Pickering: Steels: Metallurgical Principles, Encyclopedia of Materials Science and Engineering, vol. 6, The MIT Press, Cambridge, 1986.

  36. K.W. Andrews: J. Iron Steel Inst., 1965, vol. 203, pp. 721-27.

    Google Scholar 

  37. W. Steven and A.G. Haynes: J. Iron Steel Inst., 1956, vol. 183, pp. 349-59.

    Google Scholar 

  38. S. Thompson and P. Howell: Mater. Sci. Technol., 1992, vol. 8, pp. 777-84.

    Google Scholar 

  39. T. Majka, D. Matlock, and G. Krauss: Metall. Mater. Trans. A, 2003, vol. 33A, pp. 1627-37.

    Google Scholar 

  40. N.S. Lim, H.S. Park, S.I. Kim, and C.G. Park: Met. Mater. Int., 2012, vol. 18, pp. 647-54.

    Article  Google Scholar 

  41. Y.-S. Jung, Y.-K. Lee, D.K. Matlock, and M.C. Mataya: Met. Mater. Int., 2011, vol. 17, pp. 553-56.

    Article  Google Scholar 

Download references

Acknowledgments

The current study was supported by POSCO under a contract No. 20108008. The authors would like to thank Mr. Hyeok Jae Jeong and Mr. Dong Hyun Ahn of POSTECH for their help with the analysis of phase-transformed microstructures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Additional information

Manuscript submitted February 9, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, H., Kang, M., Bae, C.M. et al. Anisotropy of Dynamic Compressive Properties of Non-Heat-Treating Cold-Heading-Quality Steel Bars. Metall Mater Trans A 45, 1294–1305 (2014). https://doi.org/10.1007/s11661-013-2102-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2102-3

Keywords

Navigation