Skip to main content
Log in

Mechanical Behavior of Carbide-free Medium Carbon Bainitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of bainitic transformation time on the microstructure and mechanical properties was investigated in a steel containing 0.4 pct C-2.8 pct Mn-1.8 pct Si. The microstructure was characterized using optical and transmission electron microscopy; it consisted of bainitic ferrite, martensite, and retained austenite. The volume fraction of bainite increased from 0.4 for the shortest bainitic transformation time (30 minutes) to 0.9 at the longest time (120 minutes). The above microstructures exhibited an extended elasto-plastic transition leading to very high initial work-hardening rates. The work-hardening behavior was investigated in detail using strain-path reversals to measure the back stresses. These measurements point to a substantial kinematic hardening due to the mechanical contrast between the microstructural constituents. The onset of necking coincided with the saturation of kinematic hardening. Examination of the fracture surfaces indicated that the prior austenite grain boundaries play an important role in the fracture process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The homogenized samples had circular cross-section with a diameter of 3 mm for tensile testing and 4 mm for Bauschinger testing.

References

  1. H.K.D.H. Bhadeshia and D.V. Edmonds: Met. Sci., 1983, vol. 17, pp. 420-25.

    Article  Google Scholar 

  2. F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones and P. Brown: Mater Sci Technol., 2001, vol. 17, pp. 512-16.

    Article  Google Scholar 

  3. F.G. Caballero, H.K.D.H. Bhadeshia, J.A. Mawella, D.G. Jones and P. Brown: Mater Sci Technol., 2001, vol. 17, pp. 517-22.

    Article  Google Scholar 

  4. F.G. Caballero and H. K. D. H. Bhadeshia: Curr. Opin. Solid State Mater. Sci., 2004, vol. 8, pp. 251-57.

    Article  Google Scholar 

  5. C. Garcıa-Mateo and F.G. Caballero: Mater. Trans., 2005, vol. 46, pp. 1839-46.

    Article  Google Scholar 

  6. B.R. Somers: Introduction to the Selection of Carbon and Low-Alloy Steels, in ASM Handbook, 6th ed., ASM International, Metals Park, OH, 1993.

  7. F.G. Caballero, M.J. Santofimia, C. Garcia-Mateo, J. Chao and C. Garcia de Andres: Mater. Des., 2009, vol. 30, pp. 2077-83.

    Article  Google Scholar 

  8. F.G. Caballero, C. Garcia-Mateo, C. Capdevila and C. Garcia de Andres: Mater. Manuf. Process., 2007, vol. 22, pp. 502-06.

    Article  Google Scholar 

  9. S. Allain and T. Iung: Rev. Metall., 2008, vol. 105, pp. 520-30.

    Article  Google Scholar 

  10. K.I. Sugimoto: Mater. Sci. Technol., 2009, vol. 25, pp. 1108-117.

    Article  Google Scholar 

  11. M. Soliman, H. Mostafa, A.S. El-Sabbagh and H. Palkowski: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7706-713.

    Article  Google Scholar 

  12. S.K. Putatunda, A.V. Singar, R. Tackett and G. Lawes: Mater. Sci. Eng. A, 2009, 513–514, pp. 329–39.

    Article  Google Scholar 

  13. B.A. Graville: in Welding of HSLA (Microalloyed) Structural Steels, Proceedings International Conference, American Society of Metals, Materials Park, 1976.

  14. ASTM E975-03 (2008): ASTM Annual Book of Standards (2008), ASTM International, West Conshohocken, 2008.

  15. J.S. Kirkaldy, J. von Destinon-Forstmann, and R.J. Brigham: Can. Metall. Q., 1962, vol. 59, pp. 59-81.

    Google Scholar 

  16. R.E. Stoltz and R.M. Pelloux: Metall. Trans. A, 1976, vol. 7 (9), pp. 1295–1306.

  17. S.S. Brenner: Growth and Perfection of Crystals, R.H. Doremus, B.W. Roberts, and D. Turnbull, , eds., Wiley, New York, 1958, pp. 157–90.

  18. A. Kelly and H. MacMillan: Strong Solids, Clarendon Press, Oxford, 1986.

    Google Scholar 

  19. G. Masing: Proceedings of 2nd International Congress for Applied Mechanics, Zurich, Switzerland, 1926, pp. 332–35.

    Google Scholar 

  20. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76-85.

    Article  Google Scholar 

  21. H. Mecking and U.F. Kocks: Acta Metall., 1981, vol. 29(11), pp. 1865-75.

    Article  Google Scholar 

  22. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1986, p. 283.

  23. X. Wang, H.S. Zurob, G. Xu, Q. Ye, O. Bouaziz, and D. Embury: Metall. Mater. Trans. A, 2013, vol. 44 (3), pp. 1454–61.

  24. K.I. Sugimoto, T. Iida, J. Sakaguchi and T. Kashima: ISIJ Int., 2000, vol. 40, no. 9, pp. 902-08.

    Article  Google Scholar 

  25. K.I. Sugimoto, K. Nakano, S.M. Song and T. Kashima: ISIJ Int., 2002, vol. 42, no. 4, pp. 450-55.

    Article  Google Scholar 

  26. J. Hell, M.Dehmas, S. Allain, J. M. Prado, A. Hazotte and J. Chateau: ISIJ Int., 2011, vol. 51, no. 10, pp. 1724-32.

    Article  Google Scholar 

  27. C.T. Liu, C.L. White and J.A. Horton: Acta Metall., 1985, vol. 33, no. 2, pp. 213-29.

    Article  Google Scholar 

Download references

Acknowledgment

HSZ gratefully acknowledges the financial support of the Natural Science and Engineering Research Council of Canada and ArcelorMittal. The authors are grateful to S. Alain and J-P. Masse (ArcelorMittal) for valuable discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoxu Zhang.

Additional information

Manuscript submitted August 21, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, X., Xu, G., Wang, X. et al. Mechanical Behavior of Carbide-free Medium Carbon Bainitic Steels. Metall Mater Trans A 45, 1352–1361 (2014). https://doi.org/10.1007/s11661-013-2079-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-2079-y

Keywords

Navigation