Skip to main content
Log in

Effects of Austempering Temperature on Strength, Ductility and Toughness of Low-C High-Al/Si Carbide-Free Bainitic Steel

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The microstructure and the mechanical properties of a low-carbon Al/Si-alloyed carbide-free bainitic steel austempered at temperatures between 300 and 350 °C have been investigated by means of optical microscopy, scanning electron microscopy, transmission electron microscopy, x-ray diffraction analysis, and mechanical property tests. The results show that an excellent combination of tensile strength, ductility, and impact toughness is obtained at the austempering temperature of 320 °C—but neither at the lowest temperature of 300 °C nor at the highest temperature of 350 °C. These results are correlated with the features of the constituent phases of the microstructure, especially the amount and size of retained austenite, which are largely dependent on the austempering temperature. The observations are also due to the inconsistent effects of strain-induced martensitic transformation on strength, ductility, and toughness. The results of the present study suggest that an optimized isothermal temperature may also exist for any other bainitic steel, at which, if austempering treatment is carried out, an improved combination of tensile and impact properties can be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. M. De Meyer, D. Vanderschueren, and B.C. DeCooman, The Influence of the Substitution of Si by Al on the Properties of Cold Rolled C-Mn-Si TRIP Steels, ISIJ Int., 1999, 39, p 813–822

    Article  Google Scholar 

  2. F.G. Caballero, H.K.D.H. Bhadeshia, K.J.A. Mawella, D.G. Jones, and P. Brown, Very Strong Low Temperature Bainite, Mater. Sci. Technol., 2002, 18, p 279–284

    Article  Google Scholar 

  3. M. Soliman and H. Palkowski, Ultra-Fine Bainite Structure in Hypo-Eutectoid Steels, ISIJ Int., 2007, 47, p 1703–1710

    Article  Google Scholar 

  4. C. Carcia-Mateo and F.G. Caballero, The Role of Retained Austenite on Tensile Properties of Steels with Bainitic Microstructures, Mater. Trans., 2005, 46, p 1839–1846

    Article  Google Scholar 

  5. F.G. Caballero, M.J. Santofimia, C. García-Mateo, J. Chao, and C. García de Andrés, Theoretical Design and Advanced Microstructure in Super High Strength Steels, Mater. Des., 2009, 30, p 2077–2083

    Article  Google Scholar 

  6. H.S. Yang and H.K.D.H. Bhadeshia, Designing Low Carbon, Low Temperature Bainite, Mater. Sci. Technol., 2008, 24, p 335–341

    Article  Google Scholar 

  7. T. Hojo, K. Sugimoto, Y. Mukai, and S. Ikeda, Effects of Aluminum on Delayed Fracture Properties of Ultra High Strength Low Alloy TRIP-Aided Steels, ISIJ Int., 2008, 48, p 824–829

    Article  Google Scholar 

  8. A. Barbacki and E. Mikolajski, Optimization of Heat Treatment Conditions for Maximum Toughness of High Strength Silicon Steel, J. Mater. Process. Technol., 1998, 78, p 18–23

    Article  Google Scholar 

  9. G. Lacroix, T. Pardoen, and P.J. Jacques, The Fracture Toughness of TRIP-Assisted Multiphase Steels, Acta Mater., 2008, 56, p 3900–3913

    Article  Google Scholar 

  10. H.K.D.H. Bhadeshia, High Performance Bainitic Steels, Mater. Sci. Forum, 2005, 500(501), p 63–74

    Article  Google Scholar 

  11. Q. Zhou, L. Qian, J. Tan, J. Meng, and F. Zhang, Inconsistent Effects of Mechanical Stability of Retained Austenite on Ductility and Toughness of Transformation-Induced Plasticity Steels, Mater. Sci. Eng. A, 2013, 578, p 370–376

    Article  Google Scholar 

  12. D.J. Dyson and B. Holmes, Effect of Alloying Additions on the Lattice Parameter of Austenite, J. Iron Steel Inst., 1970, 208, p 469–474

    Google Scholar 

  13. C. Garcia-Mateo, F.G. Caballero, and H.K.D.H. Bhadeshia, Acceleration of Low-Temperature Bainite, ISIJ Int., 2003, 43, p 1821–1825

    Article  Google Scholar 

  14. G.E. Dieter, Mechanical Metallurgy, McGraw-Hill, New York, 1986

    Google Scholar 

  15. L. Qian, Q. Zhou, F. Zhang, J. Meng, M. Zhang, and Y. Tian, Microstructure and Mechanical Properties of a Low Carbon Carbide-Free Bainitic Steel Co-Alloyed with Al and Si, Mater. Des., 2012, 39, p 264–268

    Article  Google Scholar 

  16. H.K.D.H. Bhadeshia, Bainite in Steels, IOM Commercial Ltd, London, 2001

    Google Scholar 

  17. C. García-Mateo and F.G. Caballero, Ultra-High-Strength Bainitic Steels, ISIJ Int., 2005, 45, p 1736–1740

    Article  Google Scholar 

  18. J.M. Rigsbee and P.J. Vander Arend, Formable HSLA and Dual-Phase Steel, A.T. Davenport, Ed., TMS-AIME, Warrendale, 1979, p 56-86

  19. I.B. Timokhina, P.D. Hodgson, and E.V. Pereloma, Effect of Deformation Schedule on the Microstructure and Mechanical Properties of a Thermomechanically Processed C-Mn-Si Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2003, 34A, p 1599–1609

    Article  Google Scholar 

  20. K.I. Sugimoto, Fracture Strength and Toughness of Ultra High Strength TRIP Aided Steels, Mater. Sci. Technol., 2009, 25, p 1108–1117

    Article  Google Scholar 

  21. S.D. Antolovich and B. Singh, On the Toughness Increment Associated with the Austenite to Martensite Phase Transformation in TRIP Steels, Metall. Trans., 1971, 2, p 2135–2141

    Article  Google Scholar 

  22. S.D. Antolovich and A. Saxena, A Model for Fatigue Crack Propagation, Eng. Fract. Mech., 1975, 7, p 649–652

    Article  Google Scholar 

  23. D.A. Curry and J.F. Knott, Effect of Microstructure on Cleavage Fracture Toughness of Quenched and Tempered Steels, Met. Sci., 1979, 13, p 341–345

    Article  Google Scholar 

  24. L. Qian, H. Toda, S. Nishido, and T. Kobayashi, Experimental and Numerical Investigations of the Effects of the Spatial Distribution of α Phase on Fracture Behavior in Hypoeutectic Al-Si Alloys, Acta Mater., 2006, 54, p 4881–4893

    Article  Google Scholar 

  25. H.K.D.H. Bhadeshia, Martensite and Bainite in Steels: Transformation Mechanism and Mechanical Properties, J. Phys. IV France, 1997, 7(C5), p 367–376

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of HeBei Province (Grant No. E2015203106) and Hebei Province High School Science Research Project (Grant No. ZD2014044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihe Qian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, J., Feng, Y., Zhou, Q. et al. Effects of Austempering Temperature on Strength, Ductility and Toughness of Low-C High-Al/Si Carbide-Free Bainitic Steel. J. of Materi Eng and Perform 24, 3068–3076 (2015). https://doi.org/10.1007/s11665-015-1567-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-015-1567-1

Keywords

Navigation