Skip to main content
Log in

Cryogenic S–N Fatigue and Fatigue Crack Propagation Behaviors of High Manganese Austenitic Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the current study, the S–N fatigue and the fatigue crack propagation (FCP) behaviors of high manganese austenitic steels, including Fe24Mn and Fe22Mn, were studied, and the results were compared with STS304 (Fe-1Si-2Mn-20Cr-10Ni). The S–N fatigue tests were conducted at 298 K and 110 K (25 °C and −163 °C), respectively, and at an R ratio of 0.1 under a uniaxial loading condition. The FCP tests were conducted at 298 K and 110 K (25 °C and −163°C), respectively, and at R ratios of 0.1 and 0.5, respectively, using compact tension specimens. The resistance to S–N fatigue of each specimen increased greatly with decreasing temperature from 298 K to 110 K (25 °C to −163 °C) and showed a strong dependency on the flow stress. The FCP behaviors of the austenitic steels currently studied substantially varied depending on testing temperature, applied ΔK (stress intensity factor range), and R ratio. The enhanced FCP resistance was observed for the Fe24Mn and the Fe22Mn specimens particularly in the near-threshold ΔK regime, while the enhancement was significant over the entire ΔK regimes for the STS304 specimen, with decreasing temperature from 298 K to 110 K (25 °C to −163 °C). The S–N fatigue and the FCP behaviors of high manganese austenitic steels are compared with STS304 and discussed based on the fractographic and the micrographic observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Fatigue at Low Temperatures, ASTM STP 857, R.I. Stephens, ed., American Society for Testing and Materials, Philadelphia, 1985.

  2. P.K. Liaw and W.A. Logsdon: Eng. Fract. Mech., 1985, vol. 22, pp. 585-94.

    Article  Google Scholar 

  3. L.W. Tsay, Y.C. Chen and S.L.I. Chan: Int. J. Fatigue, 2001, vol. 23, pp. 103-13.

    Article  CAS  Google Scholar 

  4. M.R. Krishnadev and R. Ghosh: Metall. Trans. A, 1979, vol. 10A, pp. 1941-4.

    CAS  Google Scholar 

  5. C.T. Liu and M.L. Duan: Eng. Fract. Mech., 1996, vol. 53, pp. 231-37.

    Article  Google Scholar 

  6. J.H. Baek, C.M. Kim, W.S. Kim and Y.T. Kho: J. Kor. Inst. Met. & Mater., 2001, vol. 7, pp. 579-85.

    Article  CAS  Google Scholar 

  7. Z. Mei and J.W. Morris, Jr.: Metall. Trans. A, 1990, vol. 21A, pp. 3137-52.

    CAS  Google Scholar 

  8. R.L. Tobler and R.P. Reed: J. Test. Eval., 1984, vol. 12, No.6, pp. 364-70.

    Article  CAS  Google Scholar 

  9. J.K. Kwon, H.Y. Lee, Y.J. Kim and S.S. Kim: J. Kor. Inst. Met. & Mater., 2011, vol. 49, pp. 774-9.

    CAS  Google Scholar 

  10. J.W. Morris, Jr., J.W. Chan, and Z. Mei: Fourteenth International Cryogenic Engineering Conference and International Cryogenic Materials Conference, 1992, pp. 1–13.

  11. D.Y. Ryoo, S.C. Lee, Y.D. Lee and J.Y. Kang: J. Kor. Inst. Met. & Mater., 2001, vol. 39, pp. 1381-91.

    CAS  Google Scholar 

  12. R. Ogawa and J.W. Morris, Jr.: Fatigue at Low Temperatures, ASTM STP 857, R.I. Stephens, ed., American Society for Testing and Materials, Philadelphia, 1985, pp. 47–59.

  13. Q. Dai, R. Yang and K. Chen: Materials characterization, 1999, vol. 42, pp. 21-6.

    Article  CAS  Google Scholar 

  14. L. Baotong and Z. Xiulin: Mater. Sci. Eng., 1991, vol. A148, pp. 179-88.

    Google Scholar 

  15. R.L. Tobler and Y.W. Cheng: Fatigue at Low Temperatures, ASTM STP 857, 1985, pp. 3–30.

  16. K.A. Esaklul, W. Yu, and W.W. Gerberich: Fatigue at Low Temperatures, ASTM STP 857, R.I. Stephens, ed., American Society for Testing and Materials, Philadelphia, 1985, pp. 63–83.

  17. W.Yu, K. Esaklul and W.W.Gerberich: Metall. Trans. A, 1984, vol. 15A, pp. 889-900.

    CAS  Google Scholar 

  18. T. Yokobori, I. Maekawa, Y. Tanabe, Z. Jin, and S.I. Nishida: Fatigue at Low Temperatures, ASTM STP 857, R.I. Stephens, ed., American Society for Testing and Materials, Philadelphia, 1985, pp. 121–39.

  19. ASTM Standard E466: Standard Practice for Conduction Force Controlled Constant Amplitude Axial Fatigue Test of Metallic Materials, vol. 03.01, Annual book of ASTM standards, 2002.

  20. ASTM Standard E647: Standard Test Method for Measurement of Fatigue Crack Growth Rates, vol. 03.01, Annual book of ASTM standards, 2002.

  21. G.T. Gray, III, A.W. Thompson and J.C. Williams: Metall. Trans. A, 1985, vol. 16A, pp. 753-60.

    CAS  Google Scholar 

  22. Y.J. Kim, J.K. Kwon, H.J. Lee, W.K. Jang, J.K. Choi and S.S. Kim: Metall. Mater. Trans. A., 2011, vol. 42A, pp. 986-99.

    Article  Google Scholar 

  23. J.J. Lucas and P.P. Konieczny: Metall. Trans. A., 1971, vol. 2, pp. 911-2.

    Google Scholar 

  24. S.S. Kim, J.K. Kwon, Y.J. Kim, W.K. Jang, S.G. Lee, and J.K. Choi: Met. & Mater. Int., 2013, in press.

  25. K. Tanaka and T. Mura: Metall. Trans. A, 1982, vol. 13A, pp. 117-23.

    CAS  Google Scholar 

  26. K.S. Chan: Metall. Trans. A, 2003, vol. 34A, pp. 43-58.

    Article  CAS  Google Scholar 

  27. M.F. Carlson and R.O. Ritchie: Scripta Metall., 1977, vol. 12, pp. 1113-8.

    Google Scholar 

  28. T. Kunio, M. Shimizu, K. Yamada, M. Enomoto and A. Yoshitake: Fat. Eng. Mat. Struct., 1979, vol. 2, pp. 237-49.

    Article  CAS  Google Scholar 

  29. S. Allain, J.-P. Chateau, O. Bouaziz, S. Migot, N. Guelton: Mater. Sci. & Eng., 2004, vol. A387-389, pp. 158-62.

    Google Scholar 

  30. K. Tanaka and T. Mura: Acta Metall., 1984, vol. 32, No. 10, pp. 1731-40.

    Article  CAS  Google Scholar 

  31. E.A. Starke and J.C. Williams: in Fracture Mechanics: Perspectives and Directions, ASTM STP 1020, R.P. Wei and R.P. Gangloff, eds., American Society for Testing and Materials, Philadelphia, 1989, pp. 184–205.

  32. H. Ishii and J. Weertman: Metall. Trans. A., 1971, vol 2, pp. 3441-52.

    Article  CAS  Google Scholar 

  33. J.C. Li, X.X. Lu and Q. Jiang: J. Mater. Sci. Lett., 1999, vol. 18, pp. 1669-70.

    Article  CAS  Google Scholar 

  34. R.E. Schramm and R.P. Reed: Metall. Trans. A, 1975, vol. 6A, pp. 1345-51.

    CAS  Google Scholar 

  35. L. Lawson, E.Y. Chen and M. Meshii: Int. J. Fatigue, 1999, vol. 21, pp. S15-S34.

    Article  CAS  Google Scholar 

  36. D.L. Davidson and J. Lankford: Int. Mater., 1992, vol. 37, pp. 45-75.

    CAS  Google Scholar 

  37. A.K. Vasudeven, K. Sadananda and N. Louat: Mater. Sci. Eng., 1994, vol. A188, pp. 1-22.

    CAS  Google Scholar 

Download references

Acknowledgments

The current study has been supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2012-0009451). This research was also supported by the Development of Drill Riser System Project (13-9220) and the Basic Research Project “development of optimum technologies of exploration geophysics and mining for the ore deposit targeting” of the KIGAM funded by the Ministry of Knowledge Economy of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Manuscript submitted December 23, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeong, DH., Lee, SG., Jang, WK. et al. Cryogenic S–N Fatigue and Fatigue Crack Propagation Behaviors of High Manganese Austenitic Steels. Metall Mater Trans A 44, 4601–4612 (2013). https://doi.org/10.1007/s11661-013-1809-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1809-5

Keywords

Navigation