Skip to main content
Log in

Alloy Composition and Dendrite Arm Spacing in Al-Si-Cu-Mg-Fe Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Six Al-Si-Cu-Mg-(Fe/Mn) alloys with two levels of each of Cu, Si, and Fe/Mn were cast in the form of quasi-directionally solidified plates. The secondary dendrite arm spacing (SDAS) was measured as a function of the distance from the chill end for each composition and related to the local cooling rate as determined by thermocouples embedded in one of the cast plates. For a given cooling rate, Si has a strong, consistently refining effect on the SDAS per unit of solute content. Cu showed its strongest refining effect at low-Si and high-Fe contents. It is argued that the scale of the SDAS is determined by a combination of five main factors: constitutional undercooling; the fraction of Al-Si eutectic; and the amount, morphology, and distribution of the various intermetallic phases. The first two factors affect the early stages of the dendrite structure and SDAS formation, whereas the ones involving intermetallics affect the dendrite-coarsening mechanisms in the post-eutectic stage. The latter ones are more sensitive to cooling rate than the ones involving solute in solution. The scales of both, SDAS and intermetallics, can be predetermined to a measurable extent through the solute content to best suit particular casting conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Notes

  1. For Al-(4-12 pct)Si alloys, increasing the Si content decreases both the SDAS and the ternary dendrite arm spacing, but it increases the primary spacing.[12]

  2. The cooling rate reported in Reference 23 was calculated between the liquidus and the Al-Si eutectic point, i.e., it corresponds to the current CR2.

References

  1. L. Bäckerud, G. Chai, and J. Tamminen: Solidification Characteristics of Aluminum Alloys, AFS/Skanaluminium Publications, Des Plaines, IL, 1990.

  2. N.L.M. Veldman, A.K. Dahle, D.H. StJohn, and L. Arnberg: Metall. Mater. Trans. A 2001, vol. 32A, pp. 147-55.

    Article  CAS  Google Scholar 

  3. M. Easton, C. Davidson, and D. StJohn: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1528-38, DOI:10.1007/s11661-010-0183-9.

    Article  CAS  Google Scholar 

  4. F. Grosselle, F. Bonollo, G. Timelli, A. Tiziani, and E. Della Corte: Metall. Ital. 2009, vol. 1, pp. 25-32.

    Article  Google Scholar 

  5. M. Easton, C. Davidson, and D. StJohn: Mater. Trans., 2011, vol. 52, pp. 842-47, DOI:10.2320/matertrans.L-MZ201118.

    Article  CAS  Google Scholar 

  6. K. Young and D. Kerkwood: Metall. Trans. A 1975, vol. 6, pp. 197-205, DOI:10.1007/bf02673688.

    CAS  Google Scholar 

  7. Juan He, Jian Min Zeng, and Along Yan: Adv. Mater. Res. 2008, vol. 51, pp. 85-92.

    Article  CAS  Google Scholar 

  8. Q.S. Hamed and R. Elliott: Cast Met. 1993, vol. 6, pp. 36-41.

    Google Scholar 

  9. Q.S. Hamed and R. Elliott: Cast Met. 1993, vol. 6, pp. 42-46.

    Google Scholar 

  10. Q.S. Hamed and R. Elliott: Cast Met. 1993, vol. 6, pp. 47-53.

    Google Scholar 

  11. S. Boontein, N. Srisukhumbovornchai, J. Kajornchaiyakul, and C. Limmaneevichitr: Int. J. Cast Met. Res. 2011, vol. 24, pp. 108-12.

    Article  CAS  Google Scholar 

  12. R.N. Grugel: J. Mater. Sci. 1993, vol. 28, pp. 677-83, 10.1007/bf01151244.

    Article  CAS  Google Scholar 

  13. R.E. Spear and G.R. Gardner: Trans. AFS 1960, vol. 68, pp. 36-44.

    Google Scholar 

  14. L. Liu, A.M. Samuel, F.H. Samuel, H.W. Doty, and S. Valtierra: J. Mater. Sci. 2004, vol. 39, pp. 215-24, 10.1023/b:jmsc.0000007747.43275.34.

    Article  CAS  Google Scholar 

  15. [15] C.H. Caceres and J.A. Taylor: Metall. Mater. Trans. B 2006, vol. 37B, pp. 897-903, DOI:10.1007/BF02735011.

    Article  CAS  Google Scholar 

  16. M. Easton, C. Davidson, and D. StJohn: Proceedings of the 12th International Conference on Aluminium Alloys, The Japan Institute of Light Metals, Tokyo, 2010, pp. 173–78.

  17. J. Kaneko: J. Mater. Sci. 1977, vol. 12, pp. 1392-1400, 10.1007/bf00540853.

    Article  CAS  Google Scholar 

  18. [18] J. Horwath and L. Mondolfo: Acta Metallurgica 1962, vol. 10, pp. 1037-42.

    Article  CAS  Google Scholar 

  19. V. Ronto and A. Roosz: Int. J. Cast Met. Res., 2001, vol. 14, pp. 131–35.

  20. C.H. Caceres, I.L. Svensson, and J.A. Taylor: Int. J. Cast Met. Res., 2003, vol. 15, pp. 531-43.

    CAS  Google Scholar 

  21. C.H. Cáceres, B. Johannesson, J.A. Taylor, A. Canales-Nunez, M. Cardoso, and J. Talamantes: Shape casting: 2nd International Symposium, TMS, The Minerals, Metals & Materials Society, Warrendale, 2007.

  22. C.H. Caceres and J.A. Taylor: Shaping Casting: The John Campbell Symposium, vol. 1, TMS, San Francisco, 2005, pp. 245–54.

  23. C.H. Caceres and Q.G. Wang: Int. J. Cast Met. Res., 1996, vol. 9, pp. 157-62.

    CAS  Google Scholar 

  24. J.A. Taylor: 35th Australian Foundry Institute National Conference, Cooperative Research Centre for Cast Metals Manufacturing (CAST), vol. 1, The University of Queensland, Brisbane, Australia, 2004, pp. 148–157.

  25. J.A. Taylor: PhD. Thesis, The University of Queensland, Australia, 1997, p. 365.

  26. M.O. Otte: PhD. Thesis, The University of Queensland, Australia, 2000, p. 219.

  27. L.A. Dobrzański, M. Król, and T. Tański: J. Achiev. Mater. Manuf. Eng., 2010, vol. 43(2), pp. 613-33.

    Google Scholar 

  28. R.E. Spear and G.R. Gardner: Trans. Am. Found. Soc., 1963, vol. 71, pp. 209-215.

    Google Scholar 

  29. [29] Z. Li, A.M. Samuel, F.H. Samuel, C. Ravindran, and S. Valtierra: J. Mater. Sci., 2003, vol. 38, pp. 1203-18, 10.1023/a:1022857703995.

    Article  CAS  Google Scholar 

  30. T. Sivarupan, C.H Caceres, and J.A. Taylor, eds.: 6th International Light Metal Technology Conference, Materials Science Forum, Trans Tech Publications, Switzerland, 2013, in press.

  31. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 3rd ed., Trans Tech Publications, Aedermannsdorf, 1989.

  32. K. Radhakrishna and S. Seshan: AFS Trans., 1981, vol. 89, pp. 437-44.

    CAS  Google Scholar 

  33. C.H. Caceres and Q.G. Wang: AFS Trans., 1996, vol. 104, pp. 1039-43.

    CAS  Google Scholar 

  34. N. Tsumagari, C.E. Mobley, and P.R. Gangasani: AFS Trans., 1993, vol. 101, pp. 335-41.

    CAS  Google Scholar 

Download references

Acknowledgments

CAST CRC was established under, and was supported by, the Australian Federal Government’s Cooperative Research Centre Scheme. The authors thank Cameron Davidson (CSIRO) for his assistance with the radiographs and Feng Wang (University of Queensland) for help with the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlos H. Caceres.

Additional information

Manuscript submitted October 31, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sivarupan, T., Caceres, C.H. & Taylor, J.A. Alloy Composition and Dendrite Arm Spacing in Al-Si-Cu-Mg-Fe Alloys. Metall Mater Trans A 44, 4071–4080 (2013). https://doi.org/10.1007/s11661-013-1768-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-013-1768-x

Keywords

Navigation