Metallurgical and Materials Transactions A

, Volume 43, Issue 10, pp 3481–3500 | Cite as

Simulations of the Kirkendall-Effect-Induced Deformation of Thermodynamically Ideal Binary Diffusion Couples with General Geometries

  • Hui-Chia Yu
  • A. Van der Ven
  • K. ThorntonEmail author
Symposium: Hume-Rothery Symposium on Thermodynamics and Diffusion Coupling in Alloys - Application Driven Science


The Kirkendall effect stems from the imbalance of atomic diffusion fluxes in a crystalline solid. Vacancy generation and annihilation, which compensate for the unbalanced fluxes, result in deformation that is experimentally observed as the motion of fiducial markers in a diffusion couple that can be approximated as a one-dimensional system. In multiple dimensions, such deformation occurs along both the directions parallel to and normal to the primary diffusion direction. In this article, we present a model that couples unbalanced interdiffusion and the resulting plastic deformation. One- and two-dimensional simulations are conducted with the analytically calculated diffusion coefficients of a thermodynamically ideal random alloy; the result shows that the ratio of the diffusion fluxes of the atomic species equals the ratio of atomic hop frequencies, which leads to the final volume ratio also given approximately by the hop frequency ratio if the initial volume ratio is equal. Moreover, the result also demonstrates that the conventional interdiffusion model fails to describe the Kirkendall void growth dynamics. For numerical implementation, we reformulate the diffusion equation to the smoothed boundary form and solve it within the deforming body governed by steady-state Navier-Stokes equation. This work demonstrates that the presented method can be a useful tool for studying Kirkendall-effect-induced deformation.


Diffusion Couple Kirkendall Void Kirkendall Effect Bottom Slab Equilibrium Mole Fraction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



H.C.Y. and K.T. thank for the support from NSF under Grant No. 0907030. K.T. acknowledges the support of NSF under Grant No. 0746424.


  1. 1.
    E. Kirkendall, L. Thomassen, and C. Uethegrove: Trans. Am. Inst. Min. Metall. Eng. 1939, vol. 133, pp. 186–203.Google Scholar
  2. 2.
    E.O. Kirkendall. Trans. Am. Inst. Min. Metall. Eng. 1942, vol. 147, pp. 104–09.Google Scholar
  3. 3.
    A.D. Smigelskas, and E.O. Kirkendall: Trans. Am. Inst. Min. Metall. Eng. 1947, vol. 171, pp. 130–42.Google Scholar
  4. 4.
    L.S. Darken: Trans. Am. Inst. Min. Metall. Eng. 1948, vol. 175, pp. 184–201.Google Scholar
  5. 5.
    J. Schlipf: Acta. Metall. 1973, vol. 21, pp. 435–40.CrossRefGoogle Scholar
  6. 6.
    G.B. Stephenson: Scripta. Metall. 1986, vol. 20, pp. 465–70.CrossRefGoogle Scholar
  7. 7.
    G.B. Stephenson: Acta. Metall. 1988, vol. 36, pp. 2663–83.CrossRefGoogle Scholar
  8. 8.
    A. Bolk, Acta. Metall. 1961, vol. 9, pp. 632–42.CrossRefGoogle Scholar
  9. 9.
    R. Busch and V. Ruth: in Diffusion and Defect Data - Solid State Data, Pt. A: Defect and Diffusion Forum, F.J. Kedves and D.L. Beke, eds., Sci-Tech Publications, Vaduz, 1990, vol. 66-9, pp. 1287–92.Google Scholar
  10. 10.
    R. Busch, and V. Ruth: Acta. Metall. Mater., 1991, vol. 39, pp. 1535–41.CrossRefGoogle Scholar
  11. 11.
    R. Voigt, and V. Ruth: J. Phys.-Condens. Matter. 1995, vol. 7, pp. 2655–66.CrossRefGoogle Scholar
  12. 12.
    O. Kahlen, A. Kern, and V. Ruth: Defect. Diffus. Forum. 1997, vol. 143-147, pp. 489–94.CrossRefGoogle Scholar
  13. 13.
    D.W. Stevens, and G.W. Powell: Metall. Mater. Trans. A, 1977, vol. 8A, pp. 1531–41.Google Scholar
  14. 14.
    G. Opposits, S. Szabo, D.L. Beke, Z. Guba, and I.A. Szabo: Scripta. Mater. 1998, vol. 39, pp. 977–83.CrossRefGoogle Scholar
  15. 15.
    D.L. Beke, I.A. Szabo, Z. Erdelyi, and G. Opposits: Mat. Sci. Eng. A-Struct. 2004, vol. 387, pp. 4–10.CrossRefGoogle Scholar
  16. 16.
    R.W. Balluffi, and B.H. Alexander: J. Appl. Phys. 1952, vol. 23, pp. 1237–44.CrossRefGoogle Scholar
  17. 17.
    H. Fara, R.W. and Balluffi: J. Appl. Phys. 1959, vol. 30, 325–29.CrossRefGoogle Scholar
  18. 18.
    R.S. Barnes, and D.J. Mazey: Acta. Metall. 1958, vol. 6, pp. 1–7.CrossRefGoogle Scholar
  19. 19.
    I.D. Choi, D.K. Matlock, and D.L. Olson: Mat. Sci. Eng. A-Struct. 1990, vol. 124, pp. L15–18.CrossRefGoogle Scholar
  20. 20.
    H.J. Fan, M. Knez, R. Scholz, K. Nielsch, E. Pippel, D. Hesse, M. Zacharias, and U. Gösele: U. Nat. Mater. 2006, vol. 5, pp. 627–31.CrossRefGoogle Scholar
  21. 21.
    H.J. Fan, U. Gösele, and M. Zacharias: Small. 2007, vol. 3, pp. 1660–71.CrossRefGoogle Scholar
  22. 22.
    G. Glodan, C. Cserhati, I. Beszeda, and D.L. Beke: App. Phys. Lett. 2010, vol. 97, 113109.CrossRefGoogle Scholar
  23. 23.
    K. Holly, and M. Danielewski: Phys. Rev. B., 1994, vol. 50, pp. 13336–46.CrossRefGoogle Scholar
  24. 24.
    M. Danielewski, and B. Wierzba: Acta. Mater. 2004, vol. 58, pp. 6717–27.CrossRefGoogle Scholar
  25. 25.
    I. Daruka, I.A. Szabo, D.L. Beke, C.S. Cserhati, A. Kodentsov, and F.J.J. van Loo: Acta. Mater. 1996, vol. 44, pp. 4981–93.CrossRefGoogle Scholar
  26. 26.
    W.J. Boettinger, J.E. Guyer, C. E. Campell, and G.B. McFadden: P Roy. Soc. A-Math. Phy. 2007, vol. 463, pp. 3347–73.CrossRefGoogle Scholar
  27. 27.
    W.J. Boettinger, G.B. McFadden, S.R. Coriell, and J.A. Warren: Acta. Mater. 2005, vol. 53, pp. 1995–08.CrossRefGoogle Scholar
  28. 28.
    W.J. Boettinger, and G.B. McFadden: J. Phase. Equilib. Diff. 2010, vol. 31, pp. 6–14.CrossRefGoogle Scholar
  29. 29.
    J.A. Dantzig, W.J. Boettinger, J.A. Warren, G.B. McFadden, S.R. Coriell, and R.F. Sekerka: Metall. Mater. Trans. A., 2006, vol. 37A, pp. 2701–2714.CrossRefGoogle Scholar
  30. 30.
    H.-C. Yu, D.-H. Yeon, A. Van der Ven, and K. Thornton: Acta. Mater. 2007, vol. 55, pp. 6690–6704.CrossRefGoogle Scholar
  31. 31.
    J. Svoboda, F.D. Fischer, and P. Fratzl: Acta. Mater. 2006, vol. 54, pp. 3043–53.CrossRefGoogle Scholar
  32. 32.
    J. Svoboda, F.D. Fischer, and E. Gamsjager: Acta. Mater. 2008, vol. 56, pp. 351–57.CrossRefGoogle Scholar
  33. 33.
    A. Van der Ven, H.-C. Yu, G. Ceder, and K. Thornton: Prog. Mater. Sci. 2010, vol. 55, pp. 61–105.CrossRefGoogle Scholar
  34. 34.
    J. Svoboda, and F.D. Fischer, Acta. Mater., 2011, vol. 59, pp. 1212–19.CrossRefGoogle Scholar
  35. 35.
    H.-C. Yu, D.-H. Yeon, X. Li, and K. Thornton: Acta. Mater. 2009, vol. 57, pp. 5348–60.CrossRefGoogle Scholar
  36. 36.
    H.-C. Yu: Ph.D. thesis, University of Michigan, Ann Arbor MI (2009).Google Scholar
  37. 37.
    A.V. Nazarov, and K.P. Gurov: Phys. Met. Metall. 1974, vol. 37, pp. 41–47.Google Scholar
  38. 38.
    J. Bardeen: Phys. Rev., 1949, vol. 76, pp. 1403–05.CrossRefGoogle Scholar
  39. 39.
    J. Philibert: Atom Movements: Diffusion and Mass transport in Solids, 233–241. Les Editions de Physique, Les Ulis, France (1991).Google Scholar
  40. 40.
    R.F. Sekerka: Prog. Mater. Sci. 2004, vol. 49, pp. 511–36.CrossRefGoogle Scholar
  41. 41.
    A. Bueno-Orovio: App. Math. Comput. 2006, vol. 183, pp. 813–18.CrossRefGoogle Scholar
  42. 42.
    A. Bueno-Orovio, and V.M. Perez-Garcia: Numer. Meth. Part. D E, 2006, vol. 22, pp. 435–48.CrossRefGoogle Scholar
  43. 43.
    A. Bueno-Orovio, V.M. Perez-Garcia, and F.H. Fenton: SIAM. J. Sci. Comput. 2006, vol. 28, pp. 886–900.CrossRefGoogle Scholar
  44. 44.
    F.H. Fenton, E.M. Cherry, A. Karma, and W.-J. Rappel: Chaos. 2005, vol. 15, 013502.CrossRefGoogle Scholar
  45. 45.
    D. Kim, and W. Lu: Comp. Mater. Sci. 2006, vol. 38, pp. 418–25.CrossRefGoogle Scholar
  46. 46.
    D. Kim, and W. Lu: J. Mech. Phys. Solids. 2006, vol. 54, pp. 2554–68.CrossRefGoogle Scholar
  47. 47.
    E.F. Van de Velde: Concurrent Scientific Computing, chapter 8, 202. Springer-Verlag, New York, 1 edition (1994).Google Scholar
  48. 48.
    J. Hofhaus, and E.F. Van de Velde: SIAM. J. Sci. Comput. 1996, vol. 17, pp. 454–78.CrossRefGoogle Scholar
  49. 49.
    S. Aland, J. Lowengrub, and A. Voigt: CMES-Comp. Model. Eng. Sci., 2010, vol. 57, pp. 77–107.Google Scholar
  50. 50.
    S. Osher, and J.A. Sethian: J. Comput. Phys. 1988, vol. 79, pp. 12–49.CrossRefGoogle Scholar
  51. 51.
    M. Sussman, P. Smereka, and S. Osher: J. Comput. Phys. 1994, vol. 114, pp. 146–59.CrossRefGoogle Scholar
  52. 52.
    J.A. Sethian: Level Set Methods and Fast Marching Methods. 2nd ed. Cambridge University Press, Cambridge, UK (1999).Google Scholar
  53. 53.
    R.P. Fedkiw, T.D. Aslam, B. Merriman, and S. Osher: J. Comput. Phys. 1999, vol. 152, pp. 457–92.CrossRefGoogle Scholar
  54. 54.
    A.K. Henrick, T.D. Aslam, and J.M. Powers: J. Comput. Phys. 2005, vol. 207, pp. 542–67.CrossRefGoogle Scholar
  55. 55.
    Y.C. Chang, T.Y. Hou, B. Merriman and S. Osher: J. Comput. Phys. 1996, vol. 124, pp. 449–64.CrossRefGoogle Scholar
  56. 56.
    M. Sussman, and E. Fatemi: SIAM. J. Sci. Comput. 1998, vol. 20, pp. 1165–91.CrossRefGoogle Scholar
  57. 57.
    S. Osher, R. Fedkiw: Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag, New York, (2003), pp. 66–67Google Scholar
  58. 58.
    L. Höglund, and J. Ågren: Acta. Mater. 2001, vol. 49, pp. 1311–17.CrossRefGoogle Scholar
  59. 59.
    L.K. Moleko, A.R. Allnatt, and E.L. Allnatt: Philos. Mag. A., 1989, vol. 59, pp. 141–60.CrossRefGoogle Scholar
  60. 60.
    W.C. Mallard, A.B. Gardner, R.F. Bass, and L.M. Slifkin: Phys. Rev. 1963, vol. 129, pp. 617–25.CrossRefGoogle Scholar
  61. 61.
    A.M. Gusak, T.V. Zaporozhets, K.N. Tu, and U. Gösele: Philos. Mag. 2005, vol. 85, pp. 4445–64.CrossRefGoogle Scholar
  62. 62.
    L. Onsager: Phys. Rev. 1931, vol. 37, pp. 405–26.CrossRefGoogle Scholar
  63. 63.
    L. Onsager: Phys. Rev. 1931, vol. 38, pp. 2265–79.CrossRefGoogle Scholar
  64. 64.
    J.R. Manning: Phys. Rev. B. 1971, vol. 4, pp. 1111–25.CrossRefGoogle Scholar
  65. 65.
    I.V. Belova, and G.E. Murch: Philos. Mag. A, 2000, vol. 80, pp. 599–607.CrossRefGoogle Scholar
  66. 66.
    Q.C. Xu, and A. Van der Ven: Phys. Rev. B, 2010, vol. 81, 064303.CrossRefGoogle Scholar
  67. 67.
    J. Kockelkoren, H. Levine, and W.-J.Rappel: Phys. Rev. E, 2003, vol: 68, 037702.CrossRefGoogle Scholar
  68. 68.
    G.T. Buzzard, J.J. Fox, and F. Siso-Nadal: SIAM. J. Sci. Comput., 2007, vol. 30, pp. 837–54.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2012

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations