Skip to main content

Advertisement

Log in

Effect of Zn Content on Microstructure and Mechanical Properties of MgZnYLaMM Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of Zn content on microstructure, existing phases, and mechanical properties of rapidly solidified MgZn x Y1LaMM1Mn0.5 alloys (X = 2, 3, 4 at. pct) has been investigated. To assess the microstructural characterization of nanocrystalline alloys, the study also includes microstructural characterization of the master alloys. The microstructure of the alloys in as-rapidly solidified condition consisted of supersaturated magnesium dendrites and fine (Mg,Zn)17La2 and W phase (Mg3Y2Zn3) segregated at grain and cell boundaries. During continuous heating, the metastable solid solution in Mg dendrites breaks down, increasing the volume fraction of second-phase particles. After annealing for 1 hour at 673 K (400 °C), very small spherical Mn-rich precipitates appeared in the three alloys and a long-period stacking ordered (LPS) phase of rectangular morphology precipitated inside the Mg grains in the alloy with the lowest Zn content. The nanocrystalline nature of the ribbons accounts for the high hardness and yield stress values in as-rapidly solidified state, although both decrease with increasing zinc content. This fact has been related to a coarser microstructure and higher volume fraction of the W phase as the Zn content increases. The highest yield stress value of 350 MPa is attained by the MgZn2Y1LaMM1 ribbon in as-rapidly solidified condition. A decrease in yield stress values (about 50 MPa) is observed for all ribbons when they are heated at 673 K (400 °C) for 1 hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. X. Zeng, Y. Zhsang, C. Lu, W. Ding, Y. Wang, and Y. Zhu: J. Alloy. Compd., 2005, vol. 4395, pp. 213–19.

    Article  Google Scholar 

  2. I.J. Kim, D.H. Bae, and D.H. Ki: Mater. Sci. Eng. A., 2003, vol. 359, pp. 313–18.

    Article  Google Scholar 

  3. M. Yamasaki, K. Hashimoto, K. Hagihara, and Y. Kawamura: Acta Mater., 2011, vol. 59, pp. 3646–58.

    Article  CAS  Google Scholar 

  4. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloy. Compd., 2007, vol. 432, pp. 129–34.

    Article  CAS  Google Scholar 

  5. D.K. Xu, E. Han, L. Liu, and Y.B. Xu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1727–37.

    Article  CAS  Google Scholar 

  6. J.Y. Lee, D.H. Kim, H.K. Lim, and D.H. Kim: Mater. Lett., 2005, vol. 59, pp. 3801–05.

    Article  CAS  Google Scholar 

  7. Y. Kawamura, K. Hayashi, A. Inoue, and T. Masumoto: Mater. Trans. JIM., 2001, vol. 42, pp. 1172–76.

    Article  CAS  Google Scholar 

  8. Z.P. Luo and S.Q. Zhang: J. Mater. Sci. Lett., 2000, vol. 19, pp. 813–15.

    Article  CAS  Google Scholar 

  9. T. Itoi, T. Seimiya, Y. Kawamura, and M. Hiroshashi: Scripta Mater., 2004, vol. 54, pp. 107–11.

    Google Scholar 

  10. D.H. Ping, K. Hono, Y. Kawamura, and A. Inoue: Phil. Mag. Lett., 2002, vol. 82, pp. 543–51.

    Article  CAS  Google Scholar 

  11. Y. Kawamura, T. Kasahara, S. Izumi, and M. Yamasaki: Scripta Mater., 2006, vol. 55, pp. 453–56.

    Article  CAS  Google Scholar 

  12. G. Garcés, P. Pérez, S. González, and P. Adeva: Int. J. Mater. Res., 2006, vol. 97, pp. 404–08.

    Google Scholar 

  13. P. Pérez, S. González, G. Garcés, G. Caruana, and P. Adeva: Mater. Sci. Eng. A, 2008, vol. 485, pp. 194–99.

    Article  Google Scholar 

  14. Q. Li, Q. Wang, Y. Wang, X. Zeng, and W. Ding: J. Alloy. Compd. 2007, vol. 427, pp. 115–23.

    Article  CAS  Google Scholar 

  15. W. Xiao, J. Wang, J. Yang, S. Jia, and L. Wang: Mater. Sci. Eng. A, 2008, vol. 485, pp. 55–60.

    Article  Google Scholar 

  16. I.J. Kim, D.H. Bae, and D.H. Ki: Mater. Sci. Eng. A, 2003, vol. 359, pp. 313–18.

    Article  Google Scholar 

  17. A. Müller, G. Garcés, P. Pérez, and P. Adeva: J. Alloy. Compd., 2007, vol. 443, pp. L1–L5.

    Article  Google Scholar 

  18. Q. Li, Q. Wang, H. Zhou, X. Zeng, Y. Zhang, and W. Ding: Mater. Lett., 2005, vol. 59, pp. 2549–54.

    Article  CAS  Google Scholar 

  19. G. Nussbaum, P. Sainfort, G. Regazz, and H. Gjestland: Scripta Metall., 1989, vol. 23, pp. 1079–84.

    Article  CAS  Google Scholar 

  20. J. Cai, G.C. Mac, Z. Liud, H.F. Zhang, A.M. Wang, and Z.Q. Hua: Mater. Sci. Eng. A, 2007, vol. 456, pp. 364–67.

    Article  Google Scholar 

  21. X. Guoa, S. Remennik, C. Xu, and D. Shechtman: Mater. Sci. Eng. A, 2008, vol. 473, pp. 266–73.

    Article  Google Scholar 

  22. S. González, G. Garcés, P. Adeva, and P. Pérez: Mater. Charact., 2012, vol. 64, pp. 53–61.

    Article  Google Scholar 

  23. X. Zhang, D. Kevorkov, I. Jung, and M. Pekguleryuz: J. Alloy. Compd., 2009, vol. 482, pp. 420–28.

    Article  CAS  Google Scholar 

  24. M. Matsuda, S. Li, Y. Kawamura, Y. Ikuhara, and M. Nishida: Mater. Sci. Eng. A, 2005, vol. 393, pp. 269–74.

    Article  Google Scholar 

  25. Y.M. Zhu, A.J. Morton, and J.F. Nie: Acta Mater., 2010, vol. 58, pp. 2936–47.

    Article  CAS  Google Scholar 

  26. Z.H. Huang, S.M. Liang, R.S. Chen, and E.H. Han: J. Alloy. Compd., 2009, vol. 468 pp. 170–78.

    Article  CAS  Google Scholar 

  27. P. Pérez. G. Garcés, and P. Adeva: J. Alloy. Compd., 2010, vol. 491, pp. 192–99.

    Article  Google Scholar 

  28. J. Zhang, H.D. Du, W. Liang, C. Xu, and B. Lu: J. Alloy. Compd., 2007, vol. 427, pp. 244–50.

    Article  CAS  Google Scholar 

  29. D.K. Xu, W.N. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloy. Compd., 2008, vol. 461, pp. 248–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by MICIN under project MAT2009-07811.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paloma Adeva.

Additional information

Manuscript submitted September 16, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pérez, P., Garcés, G., Maeso, M. et al. Effect of Zn Content on Microstructure and Mechanical Properties of MgZnYLaMM Alloys. Metall Mater Trans A 43, 4383–4396 (2012). https://doi.org/10.1007/s11661-012-1239-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1239-9

Keywords

Navigation