Skip to main content
Log in

The Effect of Magnesium Additions on Microstructural, Thermal, and Mechanical Properties of Rapidly Solidified Al-5.5wt.%Zn-x wt.%Mg (x = 1, 5) Alloys

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

The effect of magnesium addition on the morphological, thermal, and mechanical features of conventionally and rapidly solidified Al-5.5 wt.%Zn-x wt.%Mg (x = 1, 5) samples were examined in this work. Al-5.5wt.%Zn-x wt.%Mg (x = 1, 5) samples were produced by the conventionally solidified graphite casting and rapid solidification by the melt-spinning method. The morphological and phase structures of the alloys were shown by field emission scanning electron microscopy and x-ray diffractometry. The melting temperatures were examined by differential thermal analysis in an Argon gas environment and the stress and microhardness characteristics of the conventionally solidified and melt-spun ribbons were determined by hardness and tensile strength tests. It was observed that the content of 5 wt.%Mg allowed a radical change in the conventionally solidified alloy morphologies, such as nano-sized dot shape Al12Mg17 particles and smaller sized square shaped MgZn2 particles. Moreover, the ultimate tensile strength, yield strength, and microhardness values of the rapidly solidified Al-5.5Zn-5Mg samples increased by approximately 20%. Finally, it was observed that the microstructural and mechanical properties, such as microhardness/stress values and grain size refinement, were improved with high wheel speeds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I. Polmear, Light Alloys: From Traditional Alloys to Nanocrystals, 4th ed., Butterworth-Hinemann, London, 2005

    Google Scholar 

  2. E. Acer, E. Cadirli, H. Erol, and M. Gunduz, Effect of Growth Rate on the Microstructure and Microhardness in a Directionally Solidified Al-Zn-Mg Alloy, Metall. Mater. Trans. A, 2016, 16, p 3484–3489

    Google Scholar 

  3. R. Ghiaasiaan, X. Zeng, and S. Shankar, Controlled Diffusion Solidification (CDS) of Al-Zn-Mg-Cu (7050): Microstructure, Heat Treatment and Mechanical Properties, Mater. Sci. Eng., A, 2014, 594, p 260–277

    CAS  Google Scholar 

  4. J.E. Hatch, Aluminum: Properties and Physical Metallurgy, Aluminum Association Inc. and ASM International, Cleveland, 1984

    Google Scholar 

  5. X. Zhang, W. Liu, S. Liu, and M. Zhou, Effect of Processing Parameters on Quench Sensitivity of an AA7050 Sheet, Mater. Sci. Eng., A, 2011, 528, p 795–802

    Google Scholar 

  6. E. Acer, E. Çadırlı, H. Erol, T. Kırındı, and M. Gündüz, Effect of Heat Treatment on the Microstructures and Mechanical Properties of Al-5.5Zn-2.5Mg Alloy, Mater. Sci. Eng., A, 2016, 662, p 144–156

    CAS  Google Scholar 

  7. P. Hidalgo-Manrique, A. Orozco-Caballero, C.M. Cepeda-Jimenez, O.A. Ruano, and F. Carreno, Influence of the Accumulative Roll Bonding Process Severity on the Microstructure and Superplastic Behaviour of 7075 Al Alloy, J. Mater. Sci. Technol., 2016, 32, p 774–782

    CAS  Google Scholar 

  8. R. Zuo, L.G. Hou, J.T. Shi, H. Cui, L.Z. Zhuang, and J.S. Zhang, The Mechanism of Grain Refinement and Plasticity Enhancement by an Improved Thermomechanical Treatment of 7055 Al Alloy, Mater. Sci. Eng., A, 2017, 702, p 42–52

    CAS  Google Scholar 

  9. D. Xu, Z. Li, G. Wang, X. Li, X. Lv, Y. Zhang, Y. Fan, and B. Xiong, Phase Transformation and Microstructure Evolution of an Ultra-High Strength Al-Zn-Mg-Cu Alloy During Homogenization, Mater. Charact., 2017, 131, p 285–297

    CAS  Google Scholar 

  10. T.G. Langdon, Twenty-Five Years of Ultrafine-Grained Materials: Achieving Exceptional Properties Through Grain Refinement, Acta Mater., 2013, 61, p 7035–7059

    CAS  Google Scholar 

  11. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon, Microhardness Measurements and the Hall-Petch Relationship in an Al–Mg Alloy with Sub-Micrometer Grain Size, Acta Mater., 1996, 44, p 4619–4629

    CAS  Google Scholar 

  12. S. Sabbaghianrad and T.G. Langdon, An Evaluation of the Saturation Hardness in an Ultrafine-Grained Aluminum 7075 Alloy Processed Using Different Techniques, J. Mater. Sci., 2015, 50, p 4357–4365

    CAS  Google Scholar 

  13. L. Couturier, A. Deschamps, F. De Geuser, F. Fazeli, and W.J. Poole, An Investigation of the Strain Dependence of Dynamic Precipitation in an Al-Zn-Mg-Cu Alloy, Scr. Mater., 2017, 136, p 120–123

    CAS  Google Scholar 

  14. B. Li, X.M. Wang, H. Chen, J. Hu, C. Huang, and G.Q. Gou, Influence of Heat Treatment on the Strength and Fracture Toughness of 7N01 Aluminum Alloy, J. Alloys Compd., 2016, 678, p 160–166

    CAS  Google Scholar 

  15. G. Sha and A. Cerezo, Early-Stage Precipitation in Al-Zn-Mg-Cu Alloy (7050), Acta Mater., 2004, 52, p 4503–4516

    CAS  Google Scholar 

  16. K. Wen, B. Xiong, Y. Zhang, Z. Li, X. Li, S. Huang, L. Yan, H. Yan, and H. Liu, Over-aging Influenced Matrix Precipitate Characteristics Improve Fatigue Crack Propagation in a High Zn-Containing Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng., A, 2018, 716, p 42–54

    CAS  Google Scholar 

  17. L.K. Berg, J. Gjønnes, V. Hansen, X.Z. Li, M. Knutson-Wedel, G. Waterloo, D. Schryvers, and L.R. Wallenberg, GP-Zones in Al-Zn-Mg Alloys and Their Role Inartificial Aging, Acta Mater., 2001, 49, p 3443–3451

    CAS  Google Scholar 

  18. X. Wang, M. Guo, A. Chapuis, J. Luo, and J. Zhang, Effect of Solution Time on Microstructure, Texture and Mechanical Properties of Al-Mg-Si-Cu Alloys, Mater. Sci. Eng., A, 2015, 664, p 137–151

    Google Scholar 

  19. Y. He, Z. Jia, R.E. Sanders, Y. Liu, L. Ding, Y. Xing, and Q. Liu, Quantitative Study of Dissolution of Mg2Si During Solution Treatment in AA6014 Alloy, J. Alloys Compd., 2017, 703, p 272–279

    CAS  Google Scholar 

  20. Z. Chen, Y. Mo, and Z. Nie, Effect of Zn Content on the Microstructure and Properties of Super-High Strength Al-Zn-Mg-Cu Alloys, Metall. Mater. Trans. A, 2013, 44(8), p 3910–3920

    CAS  Google Scholar 

  21. M.L. Gerard and E.L. David, The Effect of Solute Content on the Slip Behavior in 7XXX Series Aluminum Alloys, Metall. Mater. Trans. A, 1981, 12A, p 2083–2091

    Google Scholar 

  22. E. Karaköse, A.M. Ibrahim, and M. Keskin, The Morphological Properties and Microhardness of As-Cast and Melt-Spun Al-5Zn-2.5Mg Alloy, J. Inorg. Organomet. Polym Mater., 2018, 28(6), p 2645–2652

    Google Scholar 

  23. F. Zupanic, G. Lojen, L. Barba, and T. Boncina, Effect of Cu on Rapidly Solidified Al-Mn-Be Alloy, Mater. Charact., 2012, 70, p 48–54

    CAS  Google Scholar 

  24. F. Zupanic, T. Boncina, A. Krizman, W. Grogger, C. Gspan, B. Markoli, and S. Spaic, Quasicrystalline Phase in Melt-Spun Al-Mn-Be Ribbons, J. Alloys Comp., 2008, 452, p 343–347

    CAS  Google Scholar 

  25. E. Karaköse and H. Çolak, Effect of Cooling Rate and Mg Addition on the Structural Evaluation of Rapidly Solidified Al-20 wt%Cu-12 wt%Fe Alloy, Mater. Charact., 2016, 121, p 68–75

    Google Scholar 

  26. R.M. Shalaby, M. Kamal, E.A.M. Ali, and M.S. Gumaan, Microstructural and Mechanical Characterization of Melt-Spun Process Sn–3.5Ag and Sn-3.5Ag-xCu Lead-Free Solders for Low Cost Electronic Assembly, Mater. Sci. Eng., A, 2017, 446, p 690

    Google Scholar 

  27. M. Kamal, A. El-Bediwi, A.R. Lashin, and A.H. El-Zarka, Room-Temperature Indentation Creep and the Mechanical Properties of Rapidly Solidified Sn-Sb-Pb-Cu Alloys, J. Mater. Eng. Perform., 2016, 25, p 2084–2090

    CAS  Google Scholar 

  28. L.L. Dobrzyńska, P. Ochin, A. Góral, M. Faryna, and J. Dutkiewicz, The Microstructure of Rapidly Solidified Al-Zn-Mg-Cu Alloys with Zr Addition, Solid State Phenom., 2010, 163, p 42–45

    Google Scholar 

  29. E.M. Ahmed, Microstructure Properties of Rapidly Solidified Al-Zn-Mg-Cu Alloys, Indian Journal of Materials Science, 2014, Article ID 353698.

  30. K.M. Youssef, R.O. Scattergood, K.L. Murty, and C.C. Koch, Nanocrystalline Al-Mg Alloy with Ultrahigh Strength and Good Ductility, Scr. Mater., 2006, 54, p 251–256

    CAS  Google Scholar 

  31. L.A. Jacobson and J. McKittrick, Rapid Solidification Processing, Mater. Sci. Eng. Rep., 1994, 11, p 355–408

    Google Scholar 

  32. E. Karaköse, M. Yildiz, and M. Keskin, Response of Mg Addition on the Dendritic Structures and Mechanical Properties of Hypoeutectic Al-10Si (Wt. Pct.) Alloys, Metall. Mater. Trans. B, 2016, 47(4), p 2468–2478

    Google Scholar 

  33. Y. Xu, L. Ke, Y. Mao, Q. Liu, J. Xie, and H. Zeng, Formation Investigation of Intermetallic Compounds of Thick Plate Al/Mg Alloys Joint by Friction Stir Welding, Materials, 2019, 12, p 2661

    CAS  Google Scholar 

  34. E. Karaköse and M. Keskin, Effect of Mn Additions on the Microstructure and Microhardness of As-Cast and Rapidly Solidified Mg-5Ni-5Cu Alloy, J. Non Cryst. Solids, 2013, 367, p 70–81

    Google Scholar 

  35. H. Liang, S.L. Chen, and Y.A. Chang, A Thermodynamic Description of the Al-Mg-Zn System, Metall. Mater. Trans. A, 1997, 28, p 1725–1734

    Google Scholar 

  36. ASM International, ASM Handbook Volume 2, Properties and Selection: Nonferrous Alloys and Special Purpose Materials, ASM International, Cleveland, 1990

    Google Scholar 

  37. C. Pang, H. Luo, Z. Zhang, and Y. Ma, Precipitation Behavior and Grain Refinement of Burnishing Al-Zn-Mg Alloy, Prog. Nat. Sci. Mater. Int., 2018, 28, p 54–59

    CAS  Google Scholar 

  38. G. Chen, L. Chen, G. Zhao, and C. Zhang, Microstructure Evolution During Solution Treatment of Extruded Al-Zn-Mg Profile Containing a Longitudinal Weld Seam, J. Alloys Compd., 2017, 729, p 210–221

    CAS  Google Scholar 

  39. http://periodictable.com/Properties/A/AtomicRadius.v.html

  40. S. Abdi, M. Samadi Khoshkhoo, O. Shuleshova, M. Bönisch, M. Calin, L. Schultz, J. Eckert, M.D. Baró, J. Sortd, and A. Gebert, Effect of Nb Addition on Microstructure Evolution and Nano Mechanical Properties of a Glass-Forming Ti-Zr-Si Alloy, Intermetallics, 2014, 46, p 156–163

    CAS  Google Scholar 

  41. J. Zuo, L. Hou, J. Shi, H. Cui, L. Zhuang, and J. Zhang, Enhanced Plasticity and Corrosion Resistance of High Strength Al-Zn-Mg-Cu Alloy Processed by an Improved Thermomechanical Processing, J. Alloys Compd., 2017, 716, p 220–230

    CAS  Google Scholar 

  42. G. Chen, L. Chen, G. Zhao, C. Zhang, and W. Cui, Microstructure Analysis of an Al-Zn-Mg Alloy During Porthole Die Extrusion Based on Modeling of Constitutive Equation and Dynamic Recrystallization, J. Alloys Compd., 2017, 710, p 80–91

    CAS  Google Scholar 

  43. N. Takata, T. Okano, A. Suzuki, and M. Kobashi, Microstructure of Intermetallic-Reinforced Al-Based Alloy Composites Fabricated Using Eutectic Reactions in Al-Mg-Zn Ternary System, Intermetallics, 2018, 95, p 45–48

    Google Scholar 

  44. X. Yongqian, Z. Lihua, L. Shujian, and W. Xintong, Effect of Stress-Aging Treatments on Precipitates of Pre-retrogressed Al-Zn-Mg-Cu Alloy, Rare. Metal. Mater. Eng., 2017, 46(2), p 355–362

    Google Scholar 

  45. C. Meng, D. Zhang, L. Zhuang, and J. Zhang, Correlations Between Stress Corrosion Cracking, Grain Boundary Precipitates and Zn Content of Al-Mg-Zn Alloys, J. Alloys Compd., 2016, 655, p 178–187

    CAS  Google Scholar 

  46. K. Zhang, J.Q. Chen, P.Z. Ma, and X.H. Zhang, Effect of Welding Thermal Cycle on Microstructural Evolution of Al-Zn-Mg-Cu Alloy, Mater. Sci. Eng., A, 2018, 717, p 85–94

    CAS  Google Scholar 

  47. L. Wu and W.G. Ferguson, Modelling of Precipitation Hardening in Casting Aluminium Alloys, Aluminium Alloys, Theory and Applications, T. Kvackaj, Ed., Intech, Rijeka, 2011, p 307–330

    Google Scholar 

  48. A. Deschamps, G. Fribourg, Y. Bréchet, J.L. Chemin, and C.R. Hutchinson, In Situ Evaluation of Dynamic Precipitation During Plastic Straining of an Al-Zn-Mg-Cu Alloy, Acta Mater., 2012, 60(5), p 1905–1916

    CAS  Google Scholar 

  49. M. Dumont, W. Lefebvre, B. Doisneau-Cottignies, and A. Deschamps, Characterisation of the Composition and Volume Fraction of η′ and η, Precipitates in an Al-Zn-Mg Alloy by a Combination of Atom Probe, Small-Angle X-Ray Scattering and Transmission Electron Microscopy, Acta Mater., 2005, 53(10), p 2881–2892

    CAS  Google Scholar 

  50. E. Karaköse and M. Keskin, Structural Investigations of Mechanical Properties of Al Based Rapidly Solidified Alloys, Mater. Des., 2011, 32(10), p 4970–4979

    Google Scholar 

  51. K. Park, J. Park, and H. Kwon, Effect of Intermetallic Compound on the Al-Mg Composite Materials Fabricated by Mechanical Ball Milling and Spark Plasma Sintering, J. Alloys Compd., 2018, 739, p 311–318

    CAS  Google Scholar 

  52. M. Furukawa, A. Utsunomiya, K. Matsubara, Z. Horita, and T.G. Langdon, Influence of Magnesium on Grain Refinement and Ductility in a Dilute Al-Sc Alloy, Acta Mater., 2001, 49(18), p 3829–3838

    CAS  Google Scholar 

  53. Y. Wang, X. Zeng, and W. Ding, Effect of Al-4Ti-5B Master Alloy on the Grain Refinement of AZ31 Magnesium Alloy, Scr. Mater., 2006, 54(2), p 269–273

    CAS  Google Scholar 

Download references

Acknowledgments

This study was financed by Erciyes University Research Fund, Grant No. FYL-2017-7348 and Çankırı Karatekin University Research Fund, Grant No: FF200217B31.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ercan Karaköse.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karaköse, E., Çolak, H. & Keskin, M. The Effect of Magnesium Additions on Microstructural, Thermal, and Mechanical Properties of Rapidly Solidified Al-5.5wt.%Zn-x wt.%Mg (x = 1, 5) Alloys. J. of Materi Eng and Perform 29, 7308–7320 (2020). https://doi.org/10.1007/s11665-020-05246-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-05246-2

Keywords

Navigation