Skip to main content

Advertisement

Log in

Influence of Higher Zn/Y Ratio on the Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This work mainly investigated the microstructure and mechanical properties of Mg-Zn-Y-Zr alloys with Zn/Y ratios of 5 and 10. An X-ray diffraction (XRD) analysis indicated that the two alloys were mainly composed of an icosahedral phase (I-phase) and α-Mg matrix. For the alloy with a Zn/Y ratio of 10, however, the diffraction peaks of the I-phase were stronger. Microstructure observation showed that the I-phase preferentially existed in the form of I-phase/α-Mg matrix interdendritic eutectic pockets at grain boundaries. Moreover, when the Zn/Y ratio was increased 2 times, the volume fraction of the I-phase in the α-Mg matrix increased 1.5 times and a tiny Mg7Zn3 phase formed. Energy-dispersive spectroscopy (EDS) mapping and electron probe microanalysis (EPMA) results suggested that the chemical composition of the I-phase was not a constant value. Computer-aided cooling curve analysis (CA-CCA) indicated that, for the alloy with a Zn/Y ratio of 5, formation of the I-phase relied on the W-phase transformation and the eutectic reaction of the residual melt. However, the I-phase formation for the alloy with a Zn/Y ratio of 10 depended on the eutectic reaction of the melt. Tensile tests indicated that the mechanical properties of the two as-cast alloys were poor. After hot extrusion processing, the mechanical properties of the alloy with a Zn/Y ratio of 10 were noticeably increased. The ultimate tensile strength (UTS) and elongation to failure reached 320 MPa and 13 pct, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. PHILIPS is a trademark of Philips Electronic Instruments Corp., Mahwah, NJ.

References

  1. Z.P. Luo, S.Q. Zhang, Y.L. Tang, and D.S. Zhao: Scripta Metall. Mater., 1993, vol. 28, pp. 1513–18.

    Article  CAS  Google Scholar 

  2. A Niikura, A.P. Tsai, A. Innoe, and T. Matsumoto: Philos. Mag. Lett., 1994, vol. 69, pp. 351–55.

    Article  ADS  CAS  Google Scholar 

  3. A.P. Tsai, A. Niikura, A. Innoe, T. Matsumoto, K. Tsuda, and M. Tanaka: Philos. Mag. Lett., 1994, vol. 70, pp. 169–75.

    Article  ADS  CAS  Google Scholar 

  4. A.P. Tsai, T. Matsumoto, and A. Niikura: Philos. Mag. A, 2000, vol. 80, pp. 1043–54.

    Article  ADS  CAS  Google Scholar 

  5. J.B. Ok, I.J. Kim, S. Yi, T.W. Kim, and D.H. Kim: Philos. Mag. A, 2003, vol. 83, pp. 2359–69.

    Article  ADS  CAS  Google Scholar 

  6. D.H. Bae, Y. Kim, and I.J. Kim: Mater. Lett., 2006, vol. 60, pp. 2190–93.

    Article  CAS  Google Scholar 

  7. D.H. Bae, M.H. Lee, K.T. Kim, W.T. Kim, and D.H. Kim: J. Alloys Compd., 2002, vol. 342, pp. 445–50.

    Article  CAS  Google Scholar 

  8. A. Singh, M. Nakamura, M. Watanabe, A. Kato, and A.P. Tsai: Scripta Mater., 2003, vol. 49, pp. 417–22.

    Article  CAS  Google Scholar 

  9. F.S. Pierce, S.J. Poon, and Q. Guo: Science, 1993, vol. 261, pp. 737–39.

    Article  PubMed  ADS  CAS  Google Scholar 

  10. J.M. Dubois, P. Plaindoux, E. Berlin-Ferre, N. Tamura, and D.J. Sordelet: Proc. 6th Int. Conf. Quasicrystals, World Scientific, Singapore, 1997.

    Google Scholar 

  11. E.S. Park, S. Yi, J.B. Ok, D.H. Bae, and W.T. Kim: Proc. MRS Fall Meeting, Boston, MA, 2001.

  12. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Scripta Mater., 2007, vol. 57, pp. 285–88.

    Article  CAS  Google Scholar 

  13. J.Y. Lee, H.K. Lim, D.H. Kim, W.T. Kim, and H.K. Do: Mater. Sci. Eng., A, 2007, vols. 449–451, pp. 987–90.

    Google Scholar 

  14. A. Singh, M. Watanabe, A. Kato, and A.P. Tsai: Mater. Sci. Eng., A, 2004, vol. 385, pp. 382–96.

    Google Scholar 

  15. D.K. Xu, W.T. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compd., 2007, vol. 432, pp. 129–34.

    Article  CAS  Google Scholar 

  16. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compd., 2006, vol. 426, pp. 155–61.

    Article  CAS  Google Scholar 

  17. J.Y. Lee, D.H. Kim, H.K. Lim, and H. Kim: Mater. Lett., 2005, vol. 59, pp. 3801–05.

    Article  CAS  Google Scholar 

  18. X.Q. Zeng, Y. Zhang, C. Lu, W.J. Ding, Y.X. Wang, and Y.P. Zhu: J. Alloys Compd., 2005, vol. 395, pp. 213–19.

    Article  CAS  Google Scholar 

  19. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Mater. Sci. Eng., A, 2007, vol. 443, pp. 248–56.

    Article  Google Scholar 

  20. Y. Zhang, X.Q. Zeng, L.F. Liu, C. Lu, H.T. Zhou, Q. Li, and Y.P. Zhu: Mater. Sci. Eng., A, 2004, vol. 373, pp. 320-27.

    Article  Google Scholar 

  21. Structure and Properties of Engineering Alloys, W.F. Smith, ed., McGraw-Hill, New York, NY, 1993, p. 542.

  22. D.K. Xu, W.T. Tang, L. Liu, Y.B. Xu, and E.H. Han: J. Alloys Compd., 2008, vol. 461, pp. 248–52.

    Article  CAS  Google Scholar 

  23. S. Yi, E.S. Park, J.B. Ok, W.T. Kim, and D.H. Kim: Mater. Sci. Eng., A, 2001, vol. 300, pp. 312–15.

    Article  Google Scholar 

  24. M.F. Horstemeyer and N. Yang: Acta Mater., 2004, vol. 52, pp. 1327–36.

    Article  CAS  Google Scholar 

  25. S.M. Liang, R.S. Chen, J.J. Blandin, M. Suery, and E.H. Han: Mater. Sci. Eng., A, doi:10.1016/j.msea.2007.07.025.

  26. D. Emadi, L.V. Whiting, S. Nafisi, and R. Ghomashchi: J. Therm. Anal. Calorim., 2005, vol. 81, pp. 235–42.

    Article  CAS  Google Scholar 

  27. K.G. Upadhya, D.M. Stefanescu, K. Lieu, and D.P. Yeager: AFS Trans., 1989, vol. 97, pp. 61–66.

    Google Scholar 

  28. S. Thompson, S.L. Cockcroft, and M.A. Wells: Mater. Sci. Technol., 2004, vol. 20, pp. 194–200.

    Article  CAS  Google Scholar 

  29. W.T. Kierkus and J.H. Solokowski: AFS Trans., 1999, vol. 107, pp. 161–67.

    CAS  Google Scholar 

  30. D. Mirkovic and R. Schmid-Fetzer: Z. Metallkd., 2006, vol. 97, pp. 119–29.

    CAS  Google Scholar 

  31. E. Fras, W. Kapturkiewicz, A. Burbielko, and H.F. Lopez: AFS Trans., 1993, vol. 101, pp. 505–11.

    CAS  Google Scholar 

  32. D.K. Xu, L. Liu, Y.B. Xu, and E.H. Han: Acta Mater., 2008, vol. 56, pp. 985–94.

    Article  CAS  Google Scholar 

  33. D.H. Bae, S.H. Kim, D.H. Kim, and W.T. Kim: Acta Mater., 2002, vol. 50, pp. 2343–56.

    Article  CAS  Google Scholar 

  34. Y. Brechet, J.D. Embury, S. Tao, and L. Luo: Acta Metall Mater., 1991, vol. 39, pp. 1781–86.

    Article  CAS  Google Scholar 

  35. D.J. Lloyd: Acta Metall Mater., 1991, vol. 39, pp. 59–71.

    Article  CAS  Google Scholar 

  36. A. Langsdorf, F. Ritter, and W. Assmus: Philos. Mag. Lett., 1997, vol. 75, pp. 381–87.

    Article  ADS  CAS  Google Scholar 

  37. N. Lebrun, A. Stamou, C. Baetzner, J. Robinson, and A. Pisch: in Ternary Alloys, G. Effenberg, F. Aldinger, and P. Rogl, eds., Materials Science International Services, Stuttgart, 2001, vol. 18, p. 702.

    Google Scholar 

  38. Y. Zhang, S. Yu, X. Zhu, and Y. Luo: J. Non-Cryst. Solids, 2008, vol. 354, pp. 1564–68.

    Article  ADS  CAS  Google Scholar 

  39. G. Shao, V. Varsni, and Z. Fan: CALPHAD, 2006, vol. 30, pp. 286–95.

    Article  CAS  Google Scholar 

  40. R.J. Arsenault, L. Wang, and C.R. Feng: Acta Metall. Mater., 1991, vol. 39, pp. 47–57.

    Article  CAS  Google Scholar 

  41. W.S. Miller and F.J. Humphreys: Scripta Metall. Mater., 1991, vol. 25, pp. 33–38.

    Article  CAS  Google Scholar 

  42. R.M. Aikin, Jr., and L. Christodoulou: Scripta Metall. Mater., 1991, vol. 25, pp. 9–14.

    Article  CAS  Google Scholar 

  43. J.W. Luster, M. Thumann, and R. Baumann: Mater. Sci. Technol., 1993, vol. 9, pp. 853–62.

    CAS  Google Scholar 

  44. M. Mabuchi and K. Higashi: Acta Mater., 1996, vol. 44, pp. 4611–18.

    Article  CAS  Google Scholar 

  45. P. Dobroň, J. Bohlen, F. Chmelík, P. Lukáč, D. Letzig, and K.U. Kainer: Mater Sci. Eng., A, 2007, vol. 462, pp. 307–10.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Science Fund of China project under Grant No. 50431020 and by a National Basic Research Program of China (973 Program) project under Grant No. 2007CB613704. The authors thank S.M. Liang and Z.H. Huang for performing some of the CA-CCA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to En-Hou Han.

Additional information

Manuscript submitted November 13, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, D.K., Han, EH., Liu, L. et al. Influence of Higher Zn/Y Ratio on the Microstructure and Mechanical Properties of Mg-Zn-Y-Zr Alloys. Metall Mater Trans A 40, 1727–1740 (2009). https://doi.org/10.1007/s11661-009-9817-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-009-9817-1

Keywords

Navigation