Skip to main content
Log in

Impact Toughness of Ultrafine-Grained Interstitial-Free Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Impact toughness of an ultrafine-grained (UFG) interstitial-free (IF) steel produced by equal-channel angular extrusion/pressing (ECAE/P) at room temperature was investigated using Charpy impact tests. The UFG IF steel shows an improved combination of strength and impact toughness compared with the corresponding coarse-grained (CG) one. The CG IF steel samples underwent a transition in fracture toughness values with decreasing temperature because of a sudden change in fracture mode from microvoid coalescence (ductile) to cleavage (brittle) fracture. Grain refinement down to the submicron (≈320 nm) levels increased the impact energies in the upper shelf and lower shelf regions, and it considerably decreased the ductile-to-brittle transition temperature (DBTT) from 233 K (−40 °C) for the CG steel to approximately 183 K (−90 °C) for the UFG steel. Also, the sudden drop in DBTT with a small transition range for the CG sample changed to a more gradual decrease in energy for the UFG sample. The improvement in toughness after UFG formation was attributed to the combined effects of grain refinement and delamination and/or separation in the heavily deformed microstructure. Although an obvious change from the ductile fracture by dimples to the brittle fracture by cleavage was recognized at 233 K (−40 °C) for the CG steel, no fully brittle fracture occurred even at 103 K (−170 °C) in the UFG steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S.-H. Lee, H. Utsunomiya, and T. Sakai: Mater. Trans., 2004, vol. 45A, pp. 2177–81.

    Article  Google Scholar 

  2. T. Niendorf, D. Canadinc, H. J. Maier, and I. Karaman: Int. J. Fatigue, 2008, vol. 30, pp. 426–36.

    Article  CAS  Google Scholar 

  3. G. Purcek, O. Saray, I. Karaman, and H.J. Maier: Metall. Mater. Trans. A, 2012, in press.

  4. R. Song, D. Ponge, and D. Raabe: Acta Mater., 2005, vol. 53, pp. 4881–92.

    Article  CAS  Google Scholar 

  5. G.J. Raab, R.Z. Valiev, T.C. Lowe, and Y.T. Zhu: Mater. Sci. Eng. A, 2004, vol. 382, pp. 30–34.

    Article  Google Scholar 

  6. K.-T. Park and D.H. Shin: Mater. Sci. Eng. A, 2002, vol. 334, pp. 79–86.

    Article  Google Scholar 

  7. R. Song, D. Ponge, D. Raabe, J.G. Speer, and D.K. Matlock: Mater. Sci. Eng. A, 2006, vol. 441, pp. 1–17.

    Article  Google Scholar 

  8. T. Niendorf, D. Canadinc, H.J. Maier, and S.G. Sutter: Int. J. Mater. Res., 2006, vol. 97, pp. 1328–36.

    CAS  Google Scholar 

  9. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1946–55.

    Article  CAS  Google Scholar 

  10. T. Niendorf, H.J. Maier, D. Canadinc, and I. Karaman: Mater. Sci. Eng. A, 2009, vol. 503, pp. 160–62.

    Article  Google Scholar 

  11. N. Tsuji, S. Okuno, Y. Koizumi, and Y. Minamino: Metall. Mater. Trans., 2004, vol. 45A, pp. 2272–81.

    Google Scholar 

  12. H.S. Kim, W.S. Ryu, M. Janecek, S.C. Baik, and Y. Estrin: Adv. Eng. Mater., 2005, vol. 7, pp. 43–46.

    Article  CAS  Google Scholar 

  13. O. Saray, G. Purcek, I. Karaman, T. Neindorf, and H.J. Maier: Mater. Sci. Eng. A, 2011, vol. 528, pp. 6573–83.

    Article  CAS  Google Scholar 

  14. B. Yan, S. Dover, L. Jin, J. Shen, and Y. Huang: Mater. Sci. Forum, 2008, vols. 584–586, pp. 631–36.

    Article  Google Scholar 

  15. Y.H. Jin, M.Y. Huh, and Y.H. Chung: J. Mater. Sci., 2004, vol. 39, pp. 5311–14.

    Article  CAS  Google Scholar 

  16. T. Hanamura, F. Yin, and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 610–17.

    Article  CAS  Google Scholar 

  17. T. Inoue, F. Yin, Y. Kimura, K. Tsuzaki, and S. Ochiai: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 341–55.

    Article  CAS  Google Scholar 

  18. M. Calcagnotto, D. Ponge, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7832–40.

    Article  Google Scholar 

  19. R.E. Barber, T. Dudo, P.B. Yasskin, and K.T. Hartwig: Scripta Mater., 2004, vol. 51, pp. 373–77.

    Article  CAS  Google Scholar 

  20. B.L. Bramfitt and A.O. Benscoter: Metallographer’s Guide: Practices and Procedures for Irons and Steels, ASM International, Materials Park, OH, 2002.

    Google Scholar 

  21. A. Belyakov, Y. Kimura, and K. Tsuzaki: Mater. Sci. Eng. A, 2005, vol. 403, pp. 249–59.

    Article  Google Scholar 

  22. A.A. Gazder, W. Cao, C.H.J. Davies, and E.V. Pereloma: Mater. Sci. Eng. A, 2008, vol. 497, pp. 341–52.

    Article  Google Scholar 

  23. T.S. Wang, Z. Li, B. Zhang, X.J. Zhang, J.M. Deng, and F.C. Zhang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 2798–2801.

    Article  Google Scholar 

  24. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier: Mater. Sci. Eng. A, 2009, vol. 517, pp. 97–104.

    Article  Google Scholar 

  25. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912–15.

    Article  CAS  Google Scholar 

  26. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scripta Mater., 2002, vol. 47, pp. 893–99.

    Article  CAS  Google Scholar 

  27. M. Fujioka, T. Yokota, Y. Adachi, and N. Matsukura: Proc. 2 nd Symp. on Super Metal, Tokyo, Japan, 1999.

  28. K. Nagai: J. Mater. Process. Tech., 2001, vol. 117, pp. 329–32.

    Article  CAS  Google Scholar 

  29. R. Kaspar, J. Distl, and O. Pawelski: Steel Res., 1988, vol. 59, pp. 421–25.

    CAS  Google Scholar 

  30. P.D. Hodgson, M.R. Hickson, and R.K. Gibbs: Scripta Mater., 1999, vol. 40, pp. 1179–84.

    Article  CAS  Google Scholar 

  31. A. Najafi-Zadeh, J. Jonas, and S. Yue: Metall. Trans. A, 1992, vol. 23A, pp. 2607–17.

    CAS  Google Scholar 

  32. S. Murty, S. Torizuka, K. Nagai, T. Kitai, and Y. Kogo: Scripta Mater., 2005, vol. 53, pp. 763–68.

    Article  CAS  Google Scholar 

  33. S. Nanba, M. Nomura, N. Matsukura, K. Makii, and Y. Shirota: Int. Symp. on Ultrafine Grained Steels (ISUGS 2001), Fukuoka, Japan, 2001.

  34. M.-C. Zhao, X.-F. Huang, J.-L. Li, T.-Y. Zeng, Y.-C. Zhao, and A. Atrens: Mater. Sci. Eng. A, 2011, vol. 528, pp. 8157–68.

    Article  CAS  Google Scholar 

  35. B. Hwang, Y.G. Kim, S. Lee, Y.M. Kim, N.J. Kim, and J.Y. Yoo: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 2107–14.

    Article  CAS  Google Scholar 

  36. S.Y. Shin, B. Hwang, S. Kim, and S. Lee: Mater. Sci. Eng. A, 2006, vol. 429, pp. 196–204.

    Article  Google Scholar 

  37. S. Kim, S. Lee, Y.R. Im, H.C. Lee, Y.J. Oh, and J.H. Hong: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 903–11.

    Article  CAS  Google Scholar 

  38. H.D: Acta Metall. Mater., 1960, vol. 8, pp. 11–18.

  39. R.O. Ritchie, J.F. Knott, and J. Rice: J. Mech. Phys. Solids, 1973, vol. 21, pp. 395–410.

    Article  CAS  Google Scholar 

  40. S.Q. Cao, J.X. Zhang, J.S. Wu, L. Wang, and J.G. Chen: Mater. Sci. Eng. A, 2005, vol. 392, pp. 203–08.

    Article  Google Scholar 

  41. H. Kurishita, T. Yamamoto, M. Narui, H. Suwarno, T. Yoshitake, Y. Yano, M. Yamazaki, and H. Matsui: J. Nucl. Mater., 2004, vol. 329, pp. 1107–12.

    Article  Google Scholar 

  42. B. Bramfitt and A. Marder: Metall. Trans. A, 1977, vol. 8A, pp. 1263–73.

    CAS  Google Scholar 

  43. T. Hashimoto, T. Sawamura, and H. Ohtani: J. Iron Steel Int., 1979, vol. 65, pp. 1425–33.

    CAS  Google Scholar 

  44. S. Matsuda, Y. Kawashima, S. Sekiguchi, and M. Okamoto: J. Iron Steel Int., 1982, vol. 68, pp. 435–43.

    CAS  Google Scholar 

  45. P. Shanmugam and S. Pathak: Eng Fract. Mech., 1996, vol. 53, pp. 991–1005.

    Article  Google Scholar 

  46. R. Schofield, G. Rowntree, N. Sarma, and R. Weiner: Met. Technol., 1974, vol. 1, pp. 325–31.

    Google Scholar 

  47. A. McEvily and R. Rush: ASM Trans., 1962, vol. 55, p. 654.

    CAS  Google Scholar 

Download references

Acknowledgments

This study was supported mainly by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 107M618. This study was also partly supported by the Scientific Research Projects of Karadeniz Technical University, under Grant 2008.112.003.6. O. Saray would like to acknowledge support from The Council of Higher Education of Turkey for the Doctoral Research Scholarship. I. Karaman would like to acknowledge the support from the U.S. National Science Foundation (NSF), Division of CMMI, Materials and Surface Engineering program, Grant 0900187, and the NSF-International Materials Institutes Program, Division of Materials Research, Grant 0844082. The authors would like to thank Eregli Iron and Steel (ERDEMIR), Inc., Zonguldak, Turkey, for their support in kindly supplying the initial materials.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gencaga Purcek.

Additional information

Manuscript submitted February 15, 2012.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Saray, O., Purcek, G., Karaman, I. et al. Impact Toughness of Ultrafine-Grained Interstitial-Free Steel. Metall Mater Trans A 43, 4320–4330 (2012). https://doi.org/10.1007/s11661-012-1238-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1238-x

Keywords

Navigation