Skip to main content
Log in

On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading

  • Sumposium: Ultrafine-Grained Materials: From Basics to Application
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructural stability of ultrafine-grained (UFG) interstitial-free (IF) steel under cyclic loading was investigated. The samples were extracted from material processed along two different equal channel angular extrusion (ECAE) routes (4C and 4E) at room temperature. Low-cycle fatigue tests were carried out in addition to electron and optical microscopy in order to characterize the microstructural evolution induced by cyclic deformation. The results revealed substantial differences in microstructure resulting from different processing routes. Specifically, the volume fraction of high-angle grain boundaries (HAGBs) and low-angle grain boundaries (LAGBs) varied significantly depending on the processing route. The different microstructural characteristics stemming from different ECAE routes expressively influence the fatigue response. Route-4C-processed material displays cyclic softening, while processing along route 4E leads to microstructural stability under cyclic loading. This highly route-dependent trend in the cyclic stress-strain response is attributed to the instability of the LAGBs and stability of HAGBs during cyclic deformation, which is further supported by electron backscattering diffraction results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, S.G. Sutter: Int. J. Mater. Res., 2006, 97:1328–36

    CAS  Google Scholar 

  2. R.Z. Valiev, A.V. Korznikov, R.R. Mulyukov: Mater. Sci. Eng. A, 1993, 168:141–48

    Article  Google Scholar 

  3. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, T.C. Lowe: J. Mater. Res., 2002, 17:5–8

    Article  CAS  Google Scholar 

  4. H.W. Höppel, J. May, M. Göken: Adv. Eng. Mater., 2004, 6:219–22

    Article  CAS  Google Scholar 

  5. H.J. Maier, P. Gabor, N. Gupta, I. Karaman, M. Haouaoui: Int. J. Fatigue, 2006, 28:243–50

    Article  CAS  Google Scholar 

  6. M. Haouaoui, I. Karaman, and H.J. Maier: Acta Mater., 2006, 54:5477–88

    Article  CAS  Google Scholar 

  7. I. Karaman, G.G. Yapici, Y.I. Chumlyakov, I.V. Kireeva: Mater. Sci. Eng. A, 2005, 410–411:243–47

    Google Scholar 

  8. I. Karaman, A.V. Kulkarni, Z.P. Luo: Phil. Mag. A, 2005, 85:1729–45

    Article  CAS  Google Scholar 

  9. C.C. Koch, K.M. Youssef, R.O. Scattergood, K.L. Murty: Adv. Eng. Mater., 2005, 7:787–94

    Article  CAS  Google Scholar 

  10. A.P. Zhilyaev, G.V. Nurislamova, B.-K. Kim, M.D. Baró, J.A. Szpunar, T.G. Langdon: Acta Mater., 2003, 51:753–65

    Article  CAS  Google Scholar 

  11. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai: Acta Mater., 1999, 47:579–83

    Article  CAS  Google Scholar 

  12. J. Huang, Y.T. Zhu, D.J. Alexander, X. Liao, T.C. Lowe, R.J. Asaro: Mater. Sci. Eng. A, 2004, 371:35–39

    Article  CAS  Google Scholar 

  13. O.V. Mishin, D.J. Jensen, N. Hansen: Mater. Sci. Eng. A, 2003, 342:320–28

    Article  Google Scholar 

  14. R.Z. Valiev, T.G. Langdon: Progr. Mater. Sci., 2006, 51:881–981

    Article  CAS  Google Scholar 

  15. V.M. Segal: Mater. Sci. Eng. A, 1995, 197:157–64

    Article  Google Scholar 

  16. Y.T. Zhu, T.C. Lowe: Mater. Sci. Eng. A, 2000, 291:46–53

    Article  Google Scholar 

  17. D.H. Shin, K.-T. Park: Mater. Sci. Eng. A, 2005, 410–411:299–302

    Google Scholar 

  18. J.T. Wang, C. Xu, Z.Z. Du, G.Z. Qu, T.G. Langdon: Mater. Sci. Eng. A, 2005, 410–411:312–15

    Google Scholar 

  19. Y. Fukuda, K. Oh-ishi, Z. Horita, T.G. Langdon: Acta Mater., 2002, 50:1359–68

    Article  CAS  Google Scholar 

  20. German Standard DIN EN 10130: 1999–02

  21. M.A. Meyers, A. Mishra, D.J. Benson: Progr. Mater. Sci., 2006, 51:427–556

    Article  CAS  Google Scholar 

  22. H.W. Höppel, M. Kautz, C. Xu, M. Murashkin, T.G. Langdon, R.Z. Valiev, H. Mughrabi: Int. J. Fatigue, 2006, 28:1001–10

    Article  CAS  Google Scholar 

  23. H.-K. Kim, M.-I. Choi, C.-H. Chung, D.-H. Shin: Mater. Sci. Eng. A, 2003, 340:243–50

    Article  Google Scholar 

  24. S.V.S. Narayana Murty, S. Torizuka, K. Nagai, T. Kitai, Y. Kogo: Scripta Mater., 2005, 53:763–68

    Article  CAS  Google Scholar 

  25. R.E. Barber, T. Dudo, P.B. Yasskin, K.T. Hartwig: Scripta Mater., 2004, 51:373–77

    Article  CAS  Google Scholar 

  26. V.M. Segal, R.E. Goforth, and K.T. Hartwig: U.S. Patent No. 5,400,633, Texas A&M University, College Station, TX, 1995

  27. H. Mughrabi, H.W. Höppel, M. Kautz, R.Z. Valiev: Z. Metallkd., 2003, 94:1079–83

    CAS  Google Scholar 

  28. S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, C.H.J. Davies: Acta Mater., 2006, 54:1087–100

    Article  CAS  Google Scholar 

  29. M. Furukawa, Z. Horita, T.G. Langdon: Mater. Sci. Eng. A, 2002, 332:97–109

    Article  Google Scholar 

  30. I. Samajdar, B. Verlinden, P. van Houtte, D. Vanderschueren: Scripta Mater., 1997, 37:869–74

    Article  CAS  Google Scholar 

  31. F. Scholz, J.H. Driver, E. Woldt: Scripta Mater., 1999, 40:949–54

    Article  CAS  Google Scholar 

  32. T. Niendorf: University of Paderborn, 2006, unpublished research

Download references

Acknowledgments

The authors thank Mrs. Dorothee Niklasch for her help with the AFM measurements, Mr. Sergej Tschumak for his help with the transmission electron microscopy analysis, and Mr. Felix Rubitschek for his assistance with the fatigue experiments. The German part of this study was supported by Deutsche Forschungsgemeinschaft, within the Research Unit Program “Mechanische Eigenschaften und Grenzflächen ultrafeinkörniger Werkstoffe.” The U.S. part of the work was supported by the National Science Foundation, Contract No. CMS 01-34554, Solid Mechanics and Materials Engineering Program, Directorate of Engineering (Arlington, VA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H.J. Maier.

Additional information

This article is based on a presentation made in the symposium entitled “Ultrafine-Grained Materials: from Basics to Application,” which occurred September 25–27, 2006 in Kloster Irsee, Germany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niendorf, T., Canadinc, D., Maier, H. et al. On the Microstructural Stability of Ultrafine-Grained Interstitial-Free Steel under Cyclic Loading. Metall Mater Trans A 38, 1946–1955 (2007). https://doi.org/10.1007/s11661-007-9154-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-007-9154-1

Keywords

Navigation