Skip to main content
Log in

Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

An investigation into the hot tear susceptibility of ternary Al-Si-Mg alloys has been made using direct crack observation, measurement of load response, and predictions made by a modified Rappaz-Drezet-Gremaud (RDG) hot tearing model. A peak in both the hot tear susceptibility and the load at solidus occurred at approximately 0.2Si and 0.15Mg, and then the hot tear susceptibility decreased as the total solute content increased. In general, a good correlation was found among the observation of cracks, the load at solidus, and the predictions of the RDG hot tearing model, although it was shown that correlation with the RDG model depended critically on the fraction solid at which solid coalescence was assumed to occur. A combination of these approaches indicated that when the total Si+Mg content and the Si:Mg ratio increased toward four, a decrease occurred in the hot tear susceptibility because of an increase in the amount of final eutectic formed. At the lowest Si:Mg ratio of 0.25, the RDG model also predicted a lower relative hot tear susceptibility than that measured by the load at solidus. In these alloys, the final stages of solidification are predicted to occur over a large temperature range, and hence, both the predictions of the RDG model and the measurement of the load were dependent on which fraction solid was chosen for grain coalescence. In the alloys studied in this article, the formation of small amounts of the ternary eutectic Al+Mg2Si+Si caused the highest hot tear susceptibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. J.F. Grandfield and P.T. McGlade: Mater. Forum, 1996, vol. 20, pp. 29–51.

    CAS  Google Scholar 

  2. D.G. Eskin, Suyitno, and L. Katgerman: Progr. Mater. Sci., 2004, vol. 49, pp. 629–711.

  3. M. M’Hamdi, A. Mo, and H.G. Fjaer: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 3069–83.

    Article  Google Scholar 

  4. D. Fabrègue, A. Deschamps, M. Suéry, and J.-M. Drezet: Acta Mater., 2006, vol. 54, pp. 5209–20.

    Article  Google Scholar 

  5. J.A. Spittle and S.G. Brown: Mater. Sci. Technol., 2005, vol. 21, no. 9, pp. 1–7.

    Article  Google Scholar 

  6. M. Rappaz, J.-M. Drezet, and M. Gremaud: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 449–55.

    Article  CAS  Google Scholar 

  7. J. Campbell: Castings, Butterworth-Heinemann, Oxford, U.K., 1997.

    Google Scholar 

  8. I. Farup, J.-M. Drezet, and M. Rappaz: Acta Mater., 2001, vol. 49, pp. 1261–69.

    Article  CAS  Google Scholar 

  9. A. Stangeland, A. Mo, Ø. Nielsen, D.G. Eskin, and M. M’Hamdi: Metall. Mater. Trans. A, 2004, vol. 35, pp. 2903–15.

    Article  CAS  Google Scholar 

  10. M. M’Hamdi and A. Mo: Mater. Sci. Eng. A, 2005, vols. 413–414, pp. 105–08.

  11. A.B. Phillion, S.L. Cockroft, and P.D. Lee: Scripta Mater., 2006, vol. 55, pp. 489–92.

    Article  CAS  Google Scholar 

  12. A.B. Phillion, S.L. Cockroft, and P.D. Lee: Mater. Sci. Eng. A, 2008, vol. 491, nos. 1–2, pp. 237–47.

    Google Scholar 

  13. D. Warrington and D.G. McCartney: Cast Metals, 1989, vol. 2, pp. 134–43.

    Google Scholar 

  14. T.W. Clyne: Solidification Cracking of Aluminium Alloys, The University of Cambridge, Cambridge, U.K., 1976.

    Google Scholar 

  15. J. Spittle and A. Cushway: Met. Tech., 1983, vol. 10, pp. 6–13.

    CAS  Google Scholar 

  16. S. Instone, D.H. St John, and J. Grandfield: Int. J. Cast Metals Res., 2000, vol. 12, pp. 441–56.

  17. S. Li, K. Sadayappan, and D. Apelian: Int. J. Cast Metals Res., 2011, vol. 24, no. 2, pp. 88–95.

    Article  CAS  Google Scholar 

  18. D.G. Eskin, Suyitno, J.F. Mooney, and L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1325–35.

  19. J. Campbell and T.W. Clyne: Cast Metals, 1991, vol. 3, no. 4, pp. 224–26.

    Google Scholar 

  20. Y.F. Guven and J.D. Hunt: Cast Metals, 1988, vol. 1, pp. 104–11.

    Google Scholar 

  21. Suyitno, D.G. Eskin, V.I. Savran, and L. Katgerman: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3551–61.

  22. G.K. Sigworth: AFS Trans., 1996, vol. 104, pp. 1053–62.

    CAS  Google Scholar 

  23. R.A. Rossenberg, M.C. Flemings, and H.F. Taylor: AFS Trans., 1960, vol. 68, pp. 518–28.

    Google Scholar 

  24. U. Feurer and R. Wanderlin: Fachbericht 38, Deutsche Gesellschaft für Metallkunde, Oberursel (FRG), 1977.

  25. X. Yan and J.C. Lin: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 913–18.

    Article  CAS  Google Scholar 

  26. P.H. Jennings, A.R.E. Singer, and W.I. Pumphrey: J. Inst. Metals, 1947, vol. 74, pp. 227–47.

    Google Scholar 

  27. T.W. Clyne and G.J. Davies: British Foundryman, 1981, vol. 74, pp. 65–73.

    Google Scholar 

  28. G. Cao and S. Kau: Mater. Sci. Eng. A, 2006, vol. 417, pp. 230–38.

    Article  Google Scholar 

  29. P. Gunde, A. Schiffl, and P.J. Uggowitzer: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7074–79.

    Article  Google Scholar 

  30. L. Katgerman: JOM, 1982, vol. 34, pp. 449–55.

    Google Scholar 

  31. N. Hatami, R. Babaei, M. Dadashzadeh, and P. Davami: J. Mater. Process. Technol., 2008, vol. 205, no. 2, pp. 506–13.

    Article  CAS  Google Scholar 

  32. I. Farup and A. Mo: Metall. Mater. Trans. A, 2000, vol. 31A, pp. 1461–72.

    Article  CAS  Google Scholar 

  33. J.F. Grandfield, C.J. Davidson, and J.A. Taylor: Light Metals 2001, TMS, Warrendale, PA, 2001, pp. 911–17.

  34. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1537–46.

  35. Suyitno, W.H. Kool, and L. Katgerman: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2388–2400.

  36. J.F. Grandfield: Hot Tear Defect Formation during Horizontal Direct Chill Casting of Magnesium, in Mining, Minerals and Materials Engineering, The University of Queensland, Brisbane, Australia, 2001.

  37. M. Rappaz, A. Jacot, and W.J. Boettinger: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 467–79.

    Article  CAS  Google Scholar 

  38. V. Mathier, A. Jacot, and M. Rappaz: Model. Simul. Mater. Sci., 2004, vol. 12, pp. 479–90.

    Article  CAS  Google Scholar 

  39. S. Vernéde and M. Rappaz: Philos. Mag., 2006, vol. 86, no. 24, pp. 3779–94.

    Article  Google Scholar 

  40. S. Vernéde, P. Jarry, and M. Rappaz: Acta Mater., 2006, vol. 54, pp. 4023–34.

    Article  Google Scholar 

  41. S. Vernéde, J.A. Dantzig, and M. Rappaz: Acta Mater., 2009, vol. 57, pp. 1554–59.

    Article  Google Scholar 

  42. I.J. Polmear: Light Alloys: Metallurgy of the Light Metals, 3rd ed. Wiley, New York, NY, 1995.

    Google Scholar 

  43. M.A. Easton and D.H. St John: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1911–20.

    Article  CAS  Google Scholar 

  44. M.A. Easton, C.J. Davidson, and D.H. St John: Mater. Trans., 2011, vol. 52, no. 5, pp. 842–47.

    Article  CAS  Google Scholar 

  45. M.A. Easton, J.F. Grandfield, D.H. St John, and B. Rinderer: Mater. Sci. Forum, 2006, vols. 519–521, pp. 1675–80.

  46. S. Lin, C. Aliravci, and M.O. Pekguleryuz: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1056–68.

    Article  CAS  Google Scholar 

  47. R. Nadella, D.G. Eskin, and L. Katgerman: Mater. Sci. Technol., 2007, vol. 23, no. 11, pp. 1327–35.

    Article  CAS  Google Scholar 

  48. M.A. Easton, D.H. St John, and E. Sweet: Light Metals 2004, TMS, Warrendale, PA, 2004, pp. 827–31.

  49. M.A. Easton, C.J. Davidson, and D.H. St John: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 1528–38.

    Article  CAS  Google Scholar 

  50. N. Saunders: Light Metals 1997, TMS, Warrendale, PA, 1997, pp. 911–18.

  51. X. Doré, H. Combeau, and M. Rappaz: Acta Mater., 2000, vol. 48, pp. 3951–62.

    Article  Google Scholar 

  52. T. Kraft and H.E. Exner: Mater. Sci. Eng. A, 1993, vol. A173, pp. 149–53.

    CAS  Google Scholar 

  53. A. Stangeland, A. Mo, M. M’Hamdi, D. Viano, and C.J. Davidson: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 705–14.

    Article  CAS  Google Scholar 

  54. A.K. Dahle, S. Instone, and T. Sumitomo: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 105–13.

    Article  CAS  Google Scholar 

  55. J.F. Grandfield, L. Lu, M.A. Easton, C.J. Davidson, D.H. St John, and B. Rinderer: 2 nd International Light Metals Technology Conf., 2005, pp. 75–80.

  56. C.J. Davidson, D. Viano, L. Lu, and D.H. St John: Int. J. Cast Metals Res., 2006, vol. 19, no. 1, pp. 59–65.

    Article  CAS  Google Scholar 

  57. M.A. Easton, H. Wang, J.F. Grandfield, D.H. St John, and E. Sweet: Mater. Forum, 2004, vol. 28, pp. 224–29.

    CAS  Google Scholar 

  58. A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans, and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  CAS  Google Scholar 

  59. A. Stangeland, A. Mo, and D.G. Eskin: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2219–29.

    Article  CAS  Google Scholar 

  60. G. Chai, L. Backerud, T. Rolland, and L. Arnberg: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 965–70.

    Article  CAS  Google Scholar 

  61. Suyitno, D.G. Eskin, and L. Katgerman: Mater. Sci. Eng. A, 2006, vol. 420, pp. 1–7.

  62. Y.X. Ju and L. Arnberg: Int. J. Cast Metals Res., 2003, vol. 16, no. 6, pp. 522–30.

    CAS  Google Scholar 

  63. D. Larouche, J. Langlais, W. Wu, and M. Bouchard: Metall. Mater. Trans. B, 2006, vol. 37B, pp. 431–43.

    Article  CAS  Google Scholar 

  64. D. Fabrègue, A. Deschamps, M. Suéry, and W.J. Poole: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1459–67.

    Article  Google Scholar 

  65. H. Naguami, S. Suzuki, T. Okane, and T. Umeda: Mater. Trans., 2006, vol. 47, no. 12, pp. 2918–24.

    Article  Google Scholar 

  66. O. Ludwig, M. Dimichiel, L. Salvo, M. Suéry, and P. Falus: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1515–23.

    Article  CAS  Google Scholar 

  67. Ø. Nielsen, L. Arnberg, A. Mo, and H. Thevik: Metall. Mater. Trans. A, 1999, vol. 30A, pp. 2455–62.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The CAST Cooperative Research Center was established under, and is supported in part by, the Australian Government’s Cooperative Research Center’s Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Easton.

Additional information

Manuscript submitted June 14, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Easton, M.A., Wang, H., Grandfield, J. et al. Observation and Prediction of the Hot Tear Susceptibility of Ternary Al-Si-Mg Alloys. Metall Mater Trans A 43, 3227–3238 (2012). https://doi.org/10.1007/s11661-012-1132-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1132-6

Keywords

Navigation