Skip to main content

Advertisement

Log in

Assessment of CpTi Surface Properties after Nitrogen Ion Implantation with Various Doses and Energies

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Nitrogen ion implantation is one of the surface modification techniques used for increasing corrosion resistance of commercially pure titanium (CpTi). The nitrogen ion implanted CpTi in various doses markedly changes the corrosion resistance. Still the effect of nitrogen ion implantation on the CpTi at different energies needs to be verified. This study uses different methods to assess the CpTi surface properties after nitrogen ion implantation in various doses and energy. Surface hardness of the CpTi increases with an increase of the dose and decreases with an increase of the energy. The precipitation of the TiN increases with an increase of the nitrogen dose, and no formation of the Ti2N phase clearly appears. Corrosion resistance of the CpTi specimens can be upgraded to some extent after their surfaces are modified, implanting nitrogen ions at 100 keV by increasing dose. The optimum surface properties of the implanted CpTi are analyzed to contribute to materials science technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. M. Balazic, J. Kopac, J.M. Jackson, and W. Ahmed: Int. J. Nan. Biomater., 2007, vol. 1 pp. 3–34.

    Article  CAS  Google Scholar 

  2. J. Jagielski, A. Piatkowska, P. Aubert, L. Thomé, A. Turos, and A. Abdul Kader: Surf. Coat. Technol., 2006, vol. 200, pp. 6355–61.

    Article  CAS  Google Scholar 

  3. X. Liu, P.K. Chu, and C. Ding: Mater. Sci. Eng., 2004, vol. 47, pp. 49–121.

    Article  Google Scholar 

  4. T. Sundararajan and Z. Praunseis: Mater. Technol., 2004, vol. 38, pp. 19–24.

    CAS  Google Scholar 

  5. S. Fokumoto, H. Tsubakino, M. Terasawa, T. Mitamura, K. Nakamura, and Y. Okazaki: Conference on Ion Implantation Technology, Aplbach, 17–22 September 2000, pp. 777–80.

  6. M. Niinomi: Mater. Sci. Eng. A, 1998, vol. 243, pp. 231–36.

    Article  Google Scholar 

  7. W. Pompe, H. Worch, M. Epple, W. Friess, M. Gelinsky, P. Greil, U. Hempel, D. Scharnweber, and K. Schulte: Mater. Sci. Eng. A, 2003, vol. 362, pp. 40–60.

    Article  Google Scholar 

  8. M.M. Arenas, T.J. Tate, A. Conde, and J. de Damborenea: Br. Corr. J., 2000, vol. 35, pp. 232–36.

    Article  CAS  Google Scholar 

  9. S. Tamilselvi and N. Rajendra: Trends Biomater. Artif. Organs, 2006, vol. 20, pp. 49–52.

    Google Scholar 

  10. V. Raman, S. Tamilselvi, S. Nanjundan, and N. Rajendran: Trends Biomater. Artif. Organs, 2005, vol. 18, pp. 137–40.

    Google Scholar 

  11. P.A. Dearnley, K.L. Dahm, and H. Cimenoðlu: Wear, 2004, vol. 256, pp. 469–79.

    Article  CAS  Google Scholar 

  12. H.J. Song, M.K. Kim, G.C. Jung, M.S. Vang, and Y.J. Park: Surf. Coat. Technol., 2007, vol. 201, pp. 8738–45.

    Article  CAS  Google Scholar 

  13. X.P. Jiang, X.Y. Wang, J.X. Li, C.S. Man, M.J. Shepard, and T. Zhai: Mater. Sci. Eng. A, 2006, vol. 429, pp. 30–35.

    Article  Google Scholar 

  14. D. Velten, V. Biehl, F. Aubertin, B. Valeske, W. Possart, and J. Breme: J. Biomed. Mater. Res. Part A, 2001, vol. 59, pp. 18–28.

    Article  Google Scholar 

  15. M.P. Kapczinski, C. Carlos Gil, E.J. Kinast, and C.A. dos Santos: Mater. Res., 2003, vol. 6, pp. 265–71.

    Article  CAS  Google Scholar 

  16. A.S. Guilherme, G.E. Henriques, R.A. Zavanelli, and M.F. Mesquita: J. Prosth. Dent., 2005, vol. 93, pp. 378–85.

    Article  CAS  Google Scholar 

  17. D. Shikha, J.H.A. Usha, S.K. Sinha, P.K. Barhai, K.G.M. Kalavathy-Nair, S. Dash, A.K. Tyagi, and D.C. Kthari: J. Appl. Cer. Technol., 2008, vol. 5, pp. 44–48.

    Article  CAS  Google Scholar 

  18. U.K. Mudali, T.M. Sridhar, and B. Raj: Sadhana-Academy Proc. Eng. Sci., 2003, vol. 28, pp. 601–37.

    Google Scholar 

  19. S. Fukumoto, H. Tsubakino, S. Inoue, L. Liu, M. Terasawa, and T. Mitamura: Mater. Sci. Eng. A, 1999, vol. 263, pp. 205–09.

    Article  Google Scholar 

  20. A.E. Munoz-Castro, R. Lopez-Callejas, E.E. Granda-Gutierrez, R. Valencia-Alvarado, S.R. Barocio, R. Pena-Eguiluz, A. Mercado-Cabrera, de la Piedad, and A. Beneitez: Prog. Org. Coat., 2009, vol. 64, pp. 259–63.

  21. R.S. Razavi, G.R. Gordani, and H.C. Man: Anti-Corr. Meth. Mater., 2011, vol. 58, pp. 140–54.

    Article  CAS  Google Scholar 

  22. E. Woolley: Mater. World, 1997, vol. 5, pp. 515–16.

    CAS  Google Scholar 

  23. J.A. Bannantine, J.J. Comer, and J.L. Handrock: Fundamentals of Metal Fatique Analysis, Prentice Hall, Englewood Cliffs, NJ, 1990.

    Google Scholar 

  24. A. Rezaie, W.G. Fahrenholtz, and G.E. Hilmas: J. Mater. Sci., 2007, vol. 42, pp. 2735–44.

    Article  CAS  Google Scholar 

  25. H. Bahmanpour, K.M. Youssef, R.O. Scattergood, and C.C. Koch: J. Mater. Sci., 2011, vol. 46, pp. 6316–22.

    Article  CAS  Google Scholar 

  26. F.L. Wen, Y.L. Lo, and Y.C. Yu: J. Vac. Sci. Technol. A, 2007, vol. 25, pp. 1137–42.

    Article  CAS  Google Scholar 

  27. G. Cassar, S. Banfield, J.C. Avelar-Batista Wilson, J. Housden, A. Matthews, and A. Leyland: Surf. Coat. Technol., 2012, vol. 206, pp. 2645–54.

    Article  CAS  Google Scholar 

  28. W. Xu, J. Liu, and H. Zhu: J. Mater. Sci., 2011, vol. 46, pp. 1161–66.

    Article  CAS  Google Scholar 

  29. J.M. Salazar and F.J.B. Calleja: J. Mater. Sci., 1983, vol. 18, pp. 1077–82.

    Article  Google Scholar 

  30. T.B. Massalski: Binary Alloy Phase Diagrams, ASM INTERNATIONAL, Materials Park, OH, 1990, vol. 3.

  31. Ö. Kabadayi: Czech. J. Phys., 2004, vol. 54, pp. 461–68.

    Article  CAS  Google Scholar 

  32. Y. Zhang, I.-T. Bae, K. Sun, C. Wang, M. Ishimaru, Z. Zhu, W. Jiang, and W.J. Weber: J. Appl. Phys., 2009, vol. 105, p. 104901.

    Article  Google Scholar 

  33. H.A. Shivaee, A.N. Golikand, H.R.M. Hosseini, and M. Asgari: J. Mater. Sci., 2010, vol. 45, pp. 546–51.

    Article  CAS  Google Scholar 

  34. A. Palmquist, O.M. Omar, M. Esposito, J. Lausmaa, and P. Thomsen: J.R. Soc. Interface, 2010, vol. 7, Suppl. 5, pp. S515–S527.

    Article  CAS  Google Scholar 

  35. B. Tam, M.I. Khan, and Y. Zhou: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2166–75.

    Article  Google Scholar 

  36. C.-Y. Son, T.S. Yoon, and S. Lee: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 1110–17.

    Article  CAS  Google Scholar 

  37. J.H. Kim, S.L. Semiatin, Y.H. Lee, and C.S. Lee: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 1805–14.

    Article  Google Scholar 

Download references

Acknowledgments

The study used the financial support of ScienceFund Vot. No. S015 granted from Ministry of Science, Technology and Innovation, Malaysia. The SienceFund provided by the ministry was greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Ali Fulazzaky.

Additional information

Manuscript submitted July 18, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fulazzaky, M.A., Ali, N., Samekto, H. et al. Assessment of CpTi Surface Properties after Nitrogen Ion Implantation with Various Doses and Energies. Metall Mater Trans A 43, 4185–4193 (2012). https://doi.org/10.1007/s11661-012-1113-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1113-9

Keywords

Navigation