Skip to main content
Log in

Mechanical and Functional Properties of Laser-Welded Ti-55.8 Wt Pct Ni Nitinol Wires

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

As interest increases in incorporating Nitinol alloys in different microapplications and devices, the development of effective procedures for laser microwelding (LMW) these alloys becomes necessary. Laser welding processes applied to Nitinol have been shown to lower strength, induce inclusions of intermetallic compounds (IMCs), and alter the pseudoelastic and shape memory effects. Inconsistency in reported weld properties has also suggested that further studies are required. The current study details the mechanical, microstructural, and phase transformation properties of Nd:YAG LMW crossed Ti-55.8 wt pct Ni Nitinol wires. The effects of surface oxide on joint performance were also investigated. Fracture strength, weld microstructure, and phase transformation temperatures at varying peak power inputs were studied and compared to the unaffected base metal. Results showed good retention of strength and pseudoelastic properties, while the fusion zone exhibited higher phase transformation temperatures, which altered the active functional properties at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Notes

  1. INSTRON is a trademark of Instron, Canton, MA.

References

  1. J.V. Humbeeck: Adv. Eng. Mater., 2001, vol. 3 (11), pp. 837–50.

    Article  Google Scholar 

  2. X.J. Yan, D.Z. Yang, and X.P. Liu: Mater. Charact., 2007, vol. 58, pp. 262–66.

    Article  CAS  Google Scholar 

  3. X.J. Yan, D.Z. Yang, and M. Qi: Mater. Charact., 2006, vol. 57, pp. 58–63.

    Article  CAS  Google Scholar 

  4. Y. Zhou: Microjoining and Nanojoining, Woodhead Publishing Ltd., Cambridge, United Kingdom, 2008.

    Book  Google Scholar 

  5. B. Tam: M.A.Sc Thesis, University of Waterloo, Waterloo, ON, Canada, 2010.

  6. P. Scholossmacher, T. Haas, and A. Schüssler: J. Phys. Coll. C5, 1997, pp. 251–56.

  7. Y. Ogata, M. Takatugu, T. Kunimasa, K. Uenishi, and K.F. Kobayashi: Mater. Trans., 2004, vol. 45, pp. 1070–76.

    Article  CAS  Google Scholar 

  8. Y.T. Hsu, Y.R. Wang, S.K. Wu, and C. Chen: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 569–76.

    Article  CAS  Google Scholar 

  9. A. Tuissi, S. Besseghini, T. Ranucci, F. Squatrito, and M. Pozzi: Mater. Sci. Eng. A, 1999, vols. A273–A275, pp. 813–17.

    Google Scholar 

  10. A. Falvo, F.M. Furgiuele, and C. Maletta: Mater. Sci. Eng. A, 2005, vol. 412, pp. 235–40.

    Article  Google Scholar 

  11. Y.G. Song, W.S. Li, L. Li, and Y.F. Zheng: Mater. Lett., 2008, vol. 62, pp. 2325–28.

    Article  CAS  Google Scholar 

  12. M.I. Khan and Y. Zhou: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6235–38.

    Article  Google Scholar 

  13. X. Li, J. Xie, and Y. Zhou: J. Mater. Sci., 2005, vol. 40, pp. 3437–43.

    Article  CAS  Google Scholar 

  14. T.W. Duerig, K.N. Melton, D. Stockel, C.M. Wayman: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann, Oxford, United Kingdom, 1990.

    Google Scholar 

  15. G.S. Firstov, R.G. Vitchev, H. Kumar, B. Blanpain, and J. Van Humbeeck: Biomaterials, 2002, vol. 23 (24), pp. 4863–71.

    Article  CAS  Google Scholar 

  16. V.G. Chuprina and I.M. Shalya: Powder Metall. Met. Ceram., 2002, vol. 41 (1–2), pp. 85–89.

    Article  CAS  Google Scholar 

  17. S.K. Sadrnezhaad and S.B. Raz: Mater. Manuf. Process., 2008, vol. 23 (7), pp. 640–50.

    Article  Google Scholar 

  18. B. Tam, M.I. Khan, and Y. Zhou: MPMD 2009, ASM International, Minneapolis, MN, 2009.

  19. S. Kou: Welding Metallurgy, 2nd ed., John Wiley & Sons, Inc., Hoboken, NJ, 2002

    Book  Google Scholar 

  20. H. Sehitoglu, R. Hamilton, D. Canadinc, X.Y. Zhang, K. Gall, I. Karaman, Y. Chumlyakov, and J.J. Maier: Metall. Mater. Trans. A, 2003, vol. 34A, pp. 5–13.

    Article  CAS  Google Scholar 

  21. F.J. Gil, J.M. Manero, and J.A. Planell: J. Mater. Sci., 1995, vol. 30, pp. 2526–30.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the National Sciences and Engineering Research Council (NSERC) of Canada. The authors are also thankful to Mr. Dennis W. Norwich, Memry Corporation, for the kind donation of material examined in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. I. Khan.

Additional information

Manuscript submitted June 10, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tam, B., Khan, M.I. & Zhou, Y. Mechanical and Functional Properties of Laser-Welded Ti-55.8 Wt Pct Ni Nitinol Wires. Metall Mater Trans A 42, 2166–2175 (2011). https://doi.org/10.1007/s11661-011-0639-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0639-6

Keywords

Navigation