Skip to main content
Log in

Ultra-Rapid Intercritical Annealing to Improve Deep Drawability of Low-Carbon, Al-Killed Steels

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Ultra-rapid annealing (URA) cycles were performed on a low-carbon, Al-killed steel coiled at a high temperature. The parameters (heating and cooling rates, and annealing temperature) of these cycles were varied to analyze their impact on the microstructure and the tensile properties of the steel. It was established that the final microstructure of the steel is governed by an interaction between the growth of the primary ferrite grains (resulting from the recrystallization) and the development of the austenite grains formed above AC1, and that the heating rate strongly influences this interaction. A microstructure favorable to deep drawability (leading to a mean plastic strain ratio of 1.8) was obtained by adjusting the parameters of the URA cycles. The current work showed that three conditions have to be fulfilled to produce this optimized microstructure: (1) Intercritical annealing should lead to the formation of about 20 pct of austenite, (2) the heating rate has to be rapid to minimize the carbon content in solution during recrystallization, and (3) the cooling rate must be relatively slow (≈50 K/s).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. F.G. Wilson and T. Gladman: Int. Mater. Rev., 1988, vol. 33, pp. 221–86.

    Article  CAS  Google Scholar 

  2. W.B. Hutchinson: Int. Met. Rev., 1984, vol. 29, pp. 25–42.

    CAS  Google Scholar 

  3. W.B. Hutchinson: Ed., Continuous Annealing of Steel, SIMR, Stockholm, Sweden, 1984.

  4. W.B. Hutchinson and K. Ushioda: Scand. J. Metall., 1984, vol. 13, pp. 269–75.

    CAS  Google Scholar 

  5. Y. Meyzaud and P. Parnière: Mem. Sci. Rev. Met., 1974, vol. 71, nos. 7 and 8, pp. 415–34.

    CAS  Google Scholar 

  6. H. Inagaki: ISIJ Int., 1994, vol. 34, no. 4, pp. 313–21.

    Article  CAS  Google Scholar 

  7. F. Emren, U. Von Schlippenbach, and K. Lücke: Acta Metall., 1986, vol. 34, no. 11, pp. 2105–17.

    Article  CAS  Google Scholar 

  8. G.R. Speich and A. Szirmae: Trans. TMS-AIME, 1969, vol. 245, pp. 1063–74.

    CAS  Google Scholar 

  9. R.R. Judd and H.W. Paxton: Trans. TMS-AIME, 1968, vol. 242, pp. 206–15.

    CAS  Google Scholar 

  10. V. Massardier, A. Ngansop, D. Fabrègue, and J. Merlin: Mater. Sci. Eng. A, 2010, vol. A527, pp. 5654–63.

    CAS  Google Scholar 

  11. A. Ngansop Nanjip: Ph.D. Dissertation, INSA-Lyon, Lyon, France, 2009.

  12. K. Takeda, N. Nakada, T. Tsuchiyama, and S. Takaki: ISIJ Int., 2008, vol. 48, pp. 1122–25.

    Article  CAS  Google Scholar 

  13. D. Muljono, M. Ferry, and D.P. Dunne: Mater. Sci. Eng. A, 2001, vol. A303, pp. 90–99.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Massardier.

Additional information

Manuscript submitted December 20, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massardier, V., Ngansop, A., Fabregue, D. et al. Ultra-Rapid Intercritical Annealing to Improve Deep Drawability of Low-Carbon, Al-Killed Steels. Metall Mater Trans A 43, 2225–2236 (2012). https://doi.org/10.1007/s11661-012-1096-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1096-6

Keywords

Navigation