Skip to main content

Advertisement

Log in

Transformations During Intercritical Annealing and Their Implications for Microstructure and Mechanical Properties of Medium Mn Transformation-Induced Plasticity Steel in Continuous Annealing Line

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

Phase transformation during intercritical annealing (IA) and the relationship between microstructure and mechanical properties of the intercritical annealed 0.2C-5MnTRIP steels were investigated using a combined method of dilatometry, scanning electron microscope, transmission electron microscope, x-ray diffraction, and tensile testing. With the increase in IA temperature and holding time, the fraction of reversed austenite increases while the chemical stability of reversed austenite decreases, leading to the transformation of reversed austenite to martensite in the cooling stage. IA temperature is found to have a greater influence on the stability of austenite than IA time. The microstructures mainly comprised of ferrite and retained austenite, with granular carbide and martensite also observed in some specimens. The carbide precipitates formed during hot rolling remain after cold rolling and annealing process and gradually dissolve at higher IA temperature or with longer IA time. The optimal IA parameter, i.e., 650 °C for 15 min, contributes to a good product of tensile strength and elongation (997 MPa × 29.25%) due to an excellent TRIP effect. The present work gives a clear insight in controlling the mechanical properties of medium Mn TRIP steel in the continuous annealing line by a reasonable design of the IA process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. W.Q. Cao, W. Chang, C.Y. Wang, S. Jie, M.Q. Wang, D. Han, and Y.Q. Weng, Microstructures and Mechanical Properties of the Third Generation Automobile Steels Fabricated by Art-Annealing, Sci. China Technol. Sci., 2012, 55(7), p 1814–1822

    Article  CAS  Google Scholar 

  2. H. Aydin, E. Essadiqi, I.-H. Jung, and S. Yue, Development of 3rd Generation AHSS with Medium Mn Content Alloying Compositions, Mater. Sci. Eng. A, 2013, 564, p 501–508. https://doi.org/10.1016/j.msea.2012.11.113

    Article  CAS  Google Scholar 

  3. J. Mahieu, B.C. De Cooman, and J. Maki, Phase Transformation and Mechanical Properties of Si-Free CMnAl Transformation-Induced Plasticity-Aided Steel, Metall. Mater. Trans. A, 2002, 33(8), p 2573–2580

    Article  Google Scholar 

  4. W. Jeong, Effect of Carbon on the Plastic Strain Ratio of Low Carbon Dual-Phase Steels, Met. Mater. Int., 2014, 20(1), p 49–53

    Article  CAS  Google Scholar 

  5. W. Ding, D. Tang, H. Jiang, and W. Huang, Influence of Isothermal Bainite Transformation Time on Microstructure and Mechanical Properties of Hot-Dip Galvanized TRIP Steel, J. Mater. Eng. Perform., 2011, 20(6), p 997–1002

    Article  CAS  Google Scholar 

  6. O. Grässel, L. Krüger, G. Frommeyer, and L.W. Meyer, High Strength Fe–Mn–(Al, Si) TRIP/TWIP Steels Development—Properties—Application, Int. J. Plast, 2000, 16(10), p 1391–1409

    Article  Google Scholar 

  7. Y.K. Lee, Microstructural Evolution during Plastic Deformation of Twinning-Induced Plasticity Steels, Scr. Mater., 2012, 66(12), p 1002–1006

    Article  CAS  Google Scholar 

  8. M. Eskandari, A. Zarei-Hanzaki, A.R. Kamali, M.A. Mohtadi-Bonab, and J.A. Szpunar, Strain Hardening During Hot Compression Through Planar Dislocation and Twin-Like Structure in a Low-Density High-Mn Steel, J. Mater. Eng. Perform., 2014, 23(10), p 3567–3576

    Article  CAS  Google Scholar 

  9. Y.-K. Lee and J. Han, Current Opinion in Medium Manganese Steel, Mater. Sci. Technol., 2015, 31(7), p 843–856. https://doi.org/10.1179/1743284714Y.0000000722

    Article  CAS  Google Scholar 

  10. R.L. Miller, Ultrafine-Grained Microstructures and Mechanical Properties of Alloy Steels, Metall. Trans., 1972, 3(4), p 905–912. https://doi.org/10.1007/BF02647665

    Article  CAS  Google Scholar 

  11. H.F. Xu, J. Zhao, W.Q. Cao, J. Shi, C.Y. Wang, C. Wang, J. Li, and H. Dong, Heat Treatment Effects on the Microstructure and Mechanical Properties of a Medium Manganese Steel (0.2C-5Mn), Mater. Sci. Eng. A, 2012, 532(5), p 435–442

    Article  CAS  Google Scholar 

  12. W.Q. Cao, C. Wang, J. Shi, M.Q. Wang, W.J. Hui, and H. Dong, Microstructure and Mechanical Properties of Fe-02C-5Mn Steel Processed by ART-Annealing, Mater. Sci. Eng. A Elsevier B.V., 2011, 528(22–23), p 6661–6666. https://doi.org/10.1016/j.msea.2011.05.039

    Article  CAS  Google Scholar 

  13. J. Hu, W. Cao, C. Huang, C. Wang, H. Dong, and J. Li, Characterization of Microstructures and Mechanical Properties of Cold-Rolled Medium-Mn Steels with Different Annealing Processes, ISIJ Int., 2015, 55(10), p 2229–2236

    Article  CAS  Google Scholar 

  14. V.F. Zackay, E.R. Parker, D. Fahr, and D.R. Bush, The Enhancement of Ductility in High-Strength Steels, Trans. Am. Soc. Met., 1967, 60, p 252–259

    CAS  Google Scholar 

  15. J.O. Andersson, T. Helander, L. Hoglund, P. Shi, and B. Sundman, THERMO-CALC & DICTRA, Computational Tools For Materials Science, Calphad, 2002, 26(2), p 273–312

    Article  CAS  Google Scholar 

  16. B.D. Cullity and S.R. Stock, Elements of x-ray Diffraction, 3rd ed., Prentice Hall, Upper Saddle River, 2001

    Google Scholar 

  17. W. Ding, P. Hedström, and Y. Li, Heat Treatment, Microstructure and Mechanical Properties of a C-Mn-Al-P Hot Dip Galvanizing TRIP Steel, Mater. Sci. Eng. A Elsevier, 2016, 674, p 151–157. https://doi.org/10.1016/j.msea.2016.07.119

    Article  CAS  Google Scholar 

  18. R. Wei, M. Enomoto, R. Hadian, H.S. Zurob, and G.R. Purdy, Growth of Austenite from As-Quenched Martensite during Intercritical Annealing in an Fe-0.1C-3Mn-1.5Si Alloy, Acta Mater., 2013, 61(2), p 697–707. https://doi.org/10.1016/j.actamat.2012.10.019

    Article  CAS  Google Scholar 

  19. H. Luo, H. Dong, and M. Huang, Effect of Intercritical Annealing on the Lüders Strains of Medium Mn Transformation-Induced Plasticity Steels, Mater. Des., 2015, 83(January), p 42–48

    Article  CAS  Google Scholar 

  20. J.-M. Jang, S.-J. Kim, N.H. Kang, K.-M. Cho, and D.-W. Suh, Effects of Annealing Conditions on Microstructure and Mechanical Properties of Low Carbon, Manganese Transformation-Induced Plasticity Steel, Met. Mater. Int., 2009, 15(6), p 909–916. https://doi.org/10.1007/s12540-009-0909-7

    Article  CAS  Google Scholar 

  21. J. Han and Y.K. Lee, The Effects of the Heating Rate on the Reverse Transformation Mechanism and the Phase Stability of Reverted Austenite in Medium Mn Steels, Acta Mater., 2014, 67, p 354–361. https://doi.org/10.1016/j.actamat.2013.12.038

    Article  CAS  Google Scholar 

  22. C. Zhao, W.Q. Cao, C. Zhang, Z.G. Yang, H. Dong, and Y.Q. Weng, Effect of Annealing Temperature and Time on Microstructure Evolution of 0·2C–5Mn Steel during Intercritical Annealing Process, Mater. Sci. Technol., 2014, 30(7), p 791–799. https://doi.org/10.1179/1743284713Y.0000000416

    Article  CAS  Google Scholar 

  23. J. Han, S.J. Lee, C.Y. Lee, S. Lee, S.Y. Jo, and Y.K. Lee, The Size Effect of Initial Martensite Constituents on the Microstructure and Tensile Properties of Intercritically Annealed Fe-9Mn-0.05C Steel, Mater. Sci. Eng. A, 2015, 633, p 9–16. https://doi.org/10.1016/j.msea.2015.02.075

    Article  CAS  Google Scholar 

  24. H. Luo, J. Liu, and H. Dong, A Novel Observation on Cementite Formed During Intercritical Annealing of Medium Mn Steel, Metall. Mater. Trans. A, 2016, 47(6), p 3119–3124. https://doi.org/10.1007/s11661-016-3448-0

    Article  CAS  Google Scholar 

  25. S. Lee, S.J. Lee, S. SanthoshKumar, K. Lee, and B.C. DeCooman, Localized Deformation in Multiphase, Ultra-Fine-Grained 6 Pct Mn Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2011, 42(12), p 3638–3651

    Article  CAS  Google Scholar 

  26. D. Embury and O. Bouaziz, Steel-Based Composites: Driving Forces and Classifications, Annu. Rev. Mater. Res., 2010, 40(40)

    Article  CAS  Google Scholar 

  27. X.H. Feng, J. Zhao, C.W. Quan, J. Shi, W.C. Yun, J. Li, and H. Dong, Tempering Effects on the Stability of Retained Austenite and Mechanical Properties in a Medium Manganese Steel, ISIJ Int., 2012, 52(5), p 868–873

    Article  Google Scholar 

Download references

Acknowledgments

Wei Ding acknowledges the financial support from National Natural Science Foundation of China (No. 51304120) and Fund of Key Laboratory of Advanced Materials of Ministry of Education (No. 2018AML10). Yan Li acknowledges the financial support from the National Natural Science Foundation of China (No.51364033). Wei Ding as a visiting researcher in Tsinghua University and Wei Ding thanks the PTMD group in Tsinghua University for their guidance and assistance in the writing of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Ding.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, W., Du, Jc. & Li, Y. Transformations During Intercritical Annealing and Their Implications for Microstructure and Mechanical Properties of Medium Mn Transformation-Induced Plasticity Steel in Continuous Annealing Line. J. of Materi Eng and Perform 29, 23–31 (2020). https://doi.org/10.1007/s11665-019-04549-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-019-04549-3

Keywords

Navigation