Skip to main content
Log in

Effect of Mg Content on the Thermodynamics of Interface Reaction in Cf/Al Composite

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The interface of carbon-fiber-reinforced aluminum matrix (Cf/Al) composites fabricated by the pressure infiltration method with different Mg contents (0, 3.2, 4.5, 6.5, and 8.5 wt pct) was observed by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). The Gibbs free energy of Al4C3 and Al3Mg2 was calculated by an extended Miedema model and a Wilson equation. The effect of Mg on the critical nuclear size of Al4C3 was discussed also. The size and number of Al4C3 decreased and transformed from needle-like to blocky with Mg content, and no Al4C3 but blocky β phase (Al3Mg2) was observed at the C-Al interface in the Cf/Al-8.5Mg composite. Increased Mg content in the Al matrix would increase the Gibbs free energy of Al4C3 but decrease that of the Al3Mg2 phase. The critical value of the Mg content, above which the formation of Al3Mg2 would be easier than Al4C3, was 8.8 wt pct when the C activity was 0.0013, which agreed well with the TEM observation. The critical nucleation size of Al4C3 \( \left( {t_{{{\text{Al}}_{4} {\text{C}}_{3} }}^{*} } \right) \) increased slowly within a low Mg content (less than 8.5 wt pct) and then abruptly after that, indicating the formation of Al4C3 is inhibited significantly in thermodynamic environments. The calculated \( t_{{{\text{Al}}_{4} {\text{C}}_{3} }}^{*} \) in the Cf/Al-6.5Mg composite was 26.3 nm, which was consistent with the HRTEM observation (24 nm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. G.H. Wu, J. Su, H.S. Gou, Z.Y. Xiu, and L.T. Jiang: J. Mater. Sci., 2009, vol. 44, pp. 4776–80.

    Article  CAS  Google Scholar 

  2. R.S. Almeida, C.A. Damato, E.C. Botelho, L.C. Pardini, and M.C. Rezende: J. Mater. Sci., 2008, vol. 43, pp. 3173–79.

    Article  CAS  Google Scholar 

  3. P. He, Y.Z. Liu, and D. Liu: Mater. Sci. Eng. A, 2006, vol. 422A, pp. 333–38.

    Google Scholar 

  4. H.N. Yang, M.Y. Gu, W.J. Jiang, and G.D. Zhang: J. Mater. Sci., 1996, vol. 31, pp. 1903–07.

    Article  CAS  Google Scholar 

  5. H. Ouyang, H. Li, L. Qi, Z. Li, T. Fang, and J. Wei: J. Mater. Sci., 2008, vol. 43, pp. 4618–24.

    Article  CAS  Google Scholar 

  6. X. Chen, G. Zhen, and Z. Shen: J. Mater. Sci., 1996, vol. 31, pp. 4297–4302.

    Article  CAS  Google Scholar 

  7. Y.H. Zhang and G.H. Wu: Rare Metals, 2010, vol. 29, pp. 102–07.

    Article  CAS  Google Scholar 

  8. H.G. Seong, H.F. Lepoz, D.P. Robertson, and P.K. Rohatgi: Mater. Sci. Eng. A, 2008, vol. 487A, pp. 201–09.

    Google Scholar 

  9. A. Daoud: Mater. Sci. Eng. A, 2005, vol. 391A, pp. 114–20.

    Google Scholar 

  10. Y.P. Tang, L. Liu, W.W. Li, B. Shen, and W.B. Hu: Appl. Surf. Sci., 2009, vol. 255, pp. 4393–4400.

    Article  CAS  Google Scholar 

  11. T. Matsunaga, K. Matsuda, T. Hatayama, K. Shinozaki, and M. Yoshida: Composites A, 2007, vol. 38A, pp. 1902–11.

    Article  CAS  Google Scholar 

  12. X. Wang, D.M. Jiang, G.H. Wu, B. Li, and P.Z. Li: Mater. Sci. Eng. A, 2008, vol. 497, pp. 31–36.

    Google Scholar 

  13. X. Chen, Y. Yang, D. Yan, Y. Dong, L. Wang, J. He, J. Zhang, and X. Li: J. Mater. Sci., 2011, in press.

  14. S. Alamolhoda, S. Heshmati-Manesh, A. Ataie, and S. Sheibani: J. Mater. Sci., 2011, vol. 46, pp. 5512–18.

    Article  CAS  Google Scholar 

  15. Z.M. Zhou, J. Gao, F. Li, Y.P. Wang, and M. Kolbe: J. Mater. Sci., 2011, in press.

  16. J. Pelleg, D. Ashkenazi, and M. Ganor: Mater. Sci. Eng. A, 2000, vol. 281A, pp. 239–47.

    Google Scholar 

  17. G.M. Wilson: J. Am. Chem. Soc., 1964, vol. 86, pp. 127–30.

    Article  CAS  Google Scholar 

  18. D.P. Tao: Metall. Mater. Trans. B, 2001, vol. 32B, pp. 1205–11.

    Article  CAS  Google Scholar 

  19. T.X. Fan, G. Yang, and D. Zhang: Mater. Sci. Eng. A, 2005, vol. 394A, pp. 327–38.

    Google Scholar 

  20. T. Tanaka and N.A. Gokcen: J. Phase Equilib., 1995, vol. 16, pp. 10–15.

    Article  Google Scholar 

  21. A.R. Miedema, P.F. De Châtel, and F.R. De Boer: Physica B, 1980, vol. 100B, pp. 1–28.

    Google Scholar 

  22. B. Revzin, D. Fuks, and J. Pelleg: Compos. Sci. Technol., 1996, vol. 56, pp. 3–10.

    Article  CAS  Google Scholar 

  23. K. Landry, C. Rado, R. Voitovich, and N. Eustathopoulos: Acta Mater., 1997, vol. 45, pp. 3079–85.

    Article  CAS  Google Scholar 

  24. T. Laha, S. Kuchibhatla, S. Seal, W. Li, and A. Agarwal: 2007, Acta Mater., vol. 55, pp. 1059–66.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by China Postdoctoral Science Foundation (Grant 20080430895), the Special Fund of Technological Innovation of Harbin (Grant 2008RFQXG045), and the Development Program for Outstanding Young Teachers in Harbin Institute of Technology (Grant HITQNJS.2009.021). It reflects only the views of the authors, and the Foundations are not liable for any use of the information contained therein. Wenshu Yang acknowledges the Chinese Scholarship Council (CSC) for financial support (Grant 2009612050).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoqin Chen Associate Professor.

Additional information

Manuscript submitted August 25, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, C., Chen, G., Wang, X. et al. Effect of Mg Content on the Thermodynamics of Interface Reaction in Cf/Al Composite. Metall Mater Trans A 43, 2514–2519 (2012). https://doi.org/10.1007/s11661-012-1090-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1090-z

Keywords

Navigation