Skip to main content

Advertisement

Log in

Effect of Environment on Fatigue Crack Wake Dislocation Structure in Al-Cu-Mg

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Fatigue-induced dislocation structure was imaged at the crack surface using transmission electron microscopy (TEM) of focused ion beam (FIB)-prepared cross sections of naturally aged Al-4Cu-1.4Mg stressed at a constant stress intensity range (7 MPa√m) concurrent with either ultralow (~10−8 Pa s) or high-purity (50 Pa s) water vapor exposure at 296 K (23 °C). A 200-to-600-nm-thick recovered-dislocation cell structure formed adjacent to the crack surface from planar slip bands in the plastic zone with the thickness of the cell structure and slip bands decreasing with increasing water vapor exposure. This result suggested lowered plastic strain accumulation in the moist environment relative to the vacuum. The previously reported fatigue crack surface crystallography is explained by the underlying dislocation substructure. For a vacuum, \( \left\{ { 1 1 1} \right\} \) facets dominate the crack path from localized slip band cracking without resolvable dislocation cells, but cell formation causes some off-\( \left\{ { 1 1 1} \right\} \) features. With water vapor present, the high level of hydrogen trapped within the developed dislocation structure could promote decohesion manifest as either low-index \( \left\{ { 100} \right\} \) or \( \left\{ { 1 10} \right\} \) facets, as well as high-index cracking through the fatigue-formed subgrain structure. These features and damage scenario provide a physical basis for modeling discontinuous environmental fatigue crack growth governed by both cyclic strain range and maximum tensile stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. J. Petit, J. de Fouquet, and G. Henaff: Handbook of Fatigue Crack Propagation in Metallic Structures, A. Carpinteri, ed., Elsevier, New York, NY, 1994, pp. 1159–204.

  2. M.R. Achter: Scripta Metall., 1968, vol. 2, pp. 525–27.

    Article  Google Scholar 

  3. F.J. Bradshaw: Scripta Metall., 1967, vol. 1, pp. 41–43.

    Article  Google Scholar 

  4. F.J. Bradshaw and C. Wheeler: Int. J. Fract., 1969, vol. 5, pp. 255–68.

    Article  Google Scholar 

  5. G.H. Bray, R.J. Bucci, and R.L. Brazill: Mater. Sci. Forum, 2000, vols. 331–333, pp. 1413–26.

    Article  Google Scholar 

  6. R.P. Gangloff: NACE, R.P. Gangloff and M.B. Ives, eds., NACE, Houston, TX, 1990, pp. 55–109.

  7. R.P. Gangloff: Fatigue ‘02, A.F. Blom, ed., Engineering Materials Advisory Services, West Midlands, UK, 2002, pp. 3401–34.

  8. C. Gasqueres, C. Sarrazin-Baudoux, and J. Petit: Fatigue ‘06, W.S. Johnson, D.L. McDowell, J.C. Newman Jr., and A. Saxena, eds., Elsevier, Atlanta, GA, 2006, p. FT214.

  9. C. Gasqueres, C. Sarrazin-Baudoux, J. Petit, and D. Dumont: Scripta Mater., 2005, vol. 53, pp. 1333–37.

    Article  CAS  Google Scholar 

  10. G. Henaff, K. Marchal, and J. Petit: Acta Metall. Mater., 1995, vol. 43, pp. 2931–42.

    Article  CAS  Google Scholar 

  11. J. Ruiz and M. Elices: Acta Mater., 1997, vol. 45, pp. 281–93.

    Article  CAS  Google Scholar 

  12. T.W. Weir, G.W. Simmons, R.G. Hart, and R.P. Wei: Scripta Metall., 1980, vol. 14, pp. 357–64.

    Article  CAS  Google Scholar 

  13. R.P. Wei, P.S. Pao, R.G. Hart, T.W. Weir, and G.W. Simmons: Metall. Trans. A, 1980, vol. 11A, pp. 151–58.

    CAS  Google Scholar 

  14. R.P. Wei, M. Gao, and P.S. Pao: Scripta Metall., 1984, vol. 18, pp. 1195–98.

    Article  CAS  Google Scholar 

  15. R.P. Wei and M. Gao: Scripta Metall., 1983, vol. 17, pp. 959–62.

    Article  Google Scholar 

  16. R.P. Wei and R.P. Gangloff: Fracture Mechanics: Perspectives and Directions. Twentieth Symposium, R.P. Wei and R.P. Gangloff, eds., American Society for Testing Materials, Philadelphia, PA, 1989, pp. 233–64.

  17. R.P. Wei: Fatigue Fract. Eng. Mater. Struct., 2002, vol. 25, pp. 845–54.

    Article  Google Scholar 

  18. R.P. Wei: Eng. Fract. Mech., 1970, vol. 1, pp. 633–51.

    Article  CAS  Google Scholar 

  19. T.H. Shih and R.P. Wei: Eng. Fract. Mech., 1983, vol. 18, pp. 827–37.

    Article  Google Scholar 

  20. P.S. Pao, M. Gao, and R.P. Wei: Basic Question in Fatigue, R.P. Wei and R.P. Gangloff, eds., ASTM International, Philadelphia, PA, 1988, pp. 182–95.

  21. P.S. Pao, M. Gao, and R.P. Wei: Scripta Metall., 1985, vol. 19A, pp. 265–70.

    Google Scholar 

  22. M. Gao, P.S. Pao, and R.P. Wei: Metall. Trans. A, 1988, vol. 19A, pp. 1739–50.

    CAS  Google Scholar 

  23. D.L. Davidson and J. Lankford: Int. Mater. Rev., 1992, vol. 37, pp. 45–76.

    CAS  Google Scholar 

  24. J.R. Scully, G.A. Young, Jr., and S. Smith: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, UK, 2012.

  25. S. Lynch: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, UK, 2012.

  26. I.M. Robertson, M.L. Martin, and J.A. Fenske: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P. Somerday, eds., Woodhead Publishing Limited, Cambridge, UK, 2012.

  27. J.M. Papazian, E.L. Anagnostou, S.J. Engel, D. Hoitsma, J. Madsen, R.P. Silberstein, G. Welsh, and J.B. Whiteside: Eng. Fract. Mech., 2009, vol. 76, pp. 620–32.

    Article  Google Scholar 

  28. Y. Ro, S.R. Agnew, G.H. Bray, and R.P. Gangloff: Mater. Sci. Eng. A, 2007, vols. 468–470, pp. 88–97.

    Google Scholar 

  29. G.H. Bray, M. Glazov, R.J. Rioja, D. Li, and R.P. Gangloff: Int. J. Fatigue, 2001, vol. 23, pp. S265–76.

    Article  CAS  Google Scholar 

  30. V.K. Gupta and S.R. Agnew: Mater. Sci. Eng. A, 2008, vol. 494, pp. 36–46.

    Article  CAS  Google Scholar 

  31. R.A. Oriani: Corrosion, 1987, vol. 43, pp. 390–97.

    Article  CAS  Google Scholar 

  32. C.J. Beevers: Met. Sci., 1977, vol. 11, pp. 362–67.

    CAS  Google Scholar 

  33. C.Q. Bowles and D. Broek: Int. J. Fract., 1972, vol. 8, pp. 75–85.

    Article  Google Scholar 

  34. P.J.E. Forsyth: Acta Metall., 1963, vol. 11, pp. 703–15.

    Article  Google Scholar 

  35. G.G. Garrett and J.F. Knott: Acta Metall., 1975, vol. 23, pp. 841–48.

    Article  CAS  Google Scholar 

  36. S.P. Lynch: Corrosion Sci., 1982, vol. 22, pp. 925–37.

    Article  CAS  Google Scholar 

  37. E.I. Meletis and R.F. Hochman: J. Test. Eval., 1984, vol. 12, pp. 142–48.

    Article  CAS  Google Scholar 

  38. D.A. Meyn: Trans. TMS-AIME, 1968, vol. 61, pp. 42–51.

    Google Scholar 

  39. J.L. Nelson and J.A. Beavers: Metall. Trans. A, 1979, vol. 10A, pp. 658–62.

    CAS  Google Scholar 

  40. K.J. Nix and H.M. Flower: Acta Metall., 1982, vol. 30, pp. 1549–59.

    Article  Google Scholar 

  41. R.S. Piascik and R.P. Gangloff: Metall. Trans. A, 1993, vol. 24A, pp. 2751–62.

    CAS  Google Scholar 

  42. V. Randle: J. Microscopy, 1999, vol. 195, pp. 226–32.

    Article  CAS  Google Scholar 

  43. V. Randle and C. Hoile: Mater. Sci. Forum, 1998, vols. 273–272, pp. 183–90.

    Article  Google Scholar 

  44. N. Ranganathan, N. Gerad, A. Tougui, R. Leroy, M. Benguediab, M. Mazari, Y. Nadot, and J. Petit: Nontraditional Methods of Sensing Stress, Strain, Damage in Materials and Structures, G.F. Lucas, P.C. McKeighan, and J.S. Ransom, eds., ASTM, West Conshohocken, PA, 2001, pp. 52–84.

  45. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1449–65.

    Article  CAS  Google Scholar 

  46. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 3042–62.

    Article  CAS  Google Scholar 

  47. Y.J. Ro: M.S. Thesis, University of Virginia, Charlottesville, VA, 2004.

  48. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Fatigue ‘06, W.S. Johnson, D.L. McDowell, J.C. Newman Jr., and A. Saxena, eds., Elsevier, Atlanta, GA, 2006, p. FT 404.

  49. D.C. Slavik and R.P. Gangloff: Acta Mater., 1996, vol. 44, pp. 3515–34.

    Article  CAS  Google Scholar 

  50. D.C. Slavik, J.A. Wert, and R.P. Gangloff: J. Mater. Res., 1993, vol. 8, pp. 2482–91.

    Article  CAS  Google Scholar 

  51. K.R.L. Thompson and J.V. Craig: Metall. Trans., 1970, vol. 1, pp. 1047–49.

    CAS  Google Scholar 

  52. G. Themelis, S. Chikwembani, and J. Weertman: Mater. Charact., 1990, vol. 24, pp. 27–40.

    Article  CAS  Google Scholar 

  53. A.P. Reynolds and G.E. Stoner: Metall. Trans. A, 1991, vol. 22A, pp. 1849–55.

    CAS  Google Scholar 

  54. C. Fong and D. Tromans: Metall. Trans. A, 1988, vol. 19A, pp. 2765–73.

    CAS  Google Scholar 

  55. R.M.N. Pelloux: Trans. TMS-AIME, 1969, vol. 62, pp. 281–85.

    CAS  Google Scholar 

  56. A. Brotzu, M. Cavallini, F. Felli, and M. Marchetti: Influence of Corrosion on Fatigue Crack Growth Propagation of Aluminum Lithium Alloys, Fatigue in the Presence of Corrosion, RTO AVT WORK SHOP, NATO report RTO-MP-18 (AC/323(AVT)TP/8), Corfu, Greece, 1998, pp. 8-1–8-12.

  57. V.K. Gupta, R.P. Gangloff, and S.R. Agnew: Int. J. Fatigue, 2011, in press.

  58. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: 4th Int. Conf. on Very High Cycle Fatigue, J.E. Allison, J.W. Jones, J.M. Larsen, and R.O. Ritchie, eds., TMS-AIME, Warrendale, PA, 2007, pp. 409–20.

  59. Y.J. Ro, S.R. Agnew, and R.P. Gangloff: Scripta Mater., 2005, vol. 52, pp. 531–36.

    Article  CAS  Google Scholar 

  60. Y.J. Ro: Ph.D Dissertation, University of Virginia, Charlottesville, VA, 2008.

  61. V.K. Gupta and S.R. Agnew: Int. J. Fatigue, 2011, vol. 33, pp. 1159–74.

    Article  CAS  Google Scholar 

  62. W. Vogel, M. Wilhelm, and V. Gerold: Acta Metall., 1982, vol. 30, pp. 31–35.

    Article  CAS  Google Scholar 

  63. E.I. Meletis and R.F. Hochman: Corrosion Sci., 1984, vol. 24, pp. 843–62.

    Article  CAS  Google Scholar 

  64. S.P. Lynch: Int. Conf. on Hydrogen Effects on Materials Behavior and Corrosion Deformation Interactions, N.R. Moody, A.W. Thompson, R. Ricker, G. Was, and R. Jones, eds., TMS, Warrendale, PA, 2002, pp. 449–66.

  65. W. Egger, G. Kogel, P. Sperr, W. Triftshauser, J. Bar, S. Rodling, and H.J. Gudladt: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 317–20.

    Google Scholar 

  66. W. Egger, G. Kogel, P. Sperr, W. Triftshauser, S. Rodling, J. Bar, and H.J. Gudladt: Appl. Surf. Sci., 2002, vol. 194, pp. 214–17.

    Article  CAS  Google Scholar 

  67. D.A. Jones, A.F. Jankowski, and G.A. Davidson: Corrosion 97, NACE International, Houston, TX, 1997, p. 188.

    Google Scholar 

  68. K.R. Cooper, L.M. Young, R.P. Gangloff, and R.G. Kelly: Mater. Sci. Forum, 2000, vols. 331–333, pp. 1625–33.

    Article  Google Scholar 

  69. H.K. Birnbaum, C. Buckley, F. Zeides, E. Sirois, P. Rozenak, S. Spooner, and J.S. Lin: J. Alloys Compd., 1997, vol. 253, pp. 260–64.

    Article  Google Scholar 

  70. H.J. Roven and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1735–54.

    Article  CAS  Google Scholar 

  71. J.P. Hirth: Metall. Trans. A, 1980, vol. 11A, pp. 861–90.

    CAS  Google Scholar 

  72. Y. Mine, T. Tsumagari, and Z. Horita: Scripta Mater., 2010, vol. 63, pp. 552–55.

    Article  CAS  Google Scholar 

  73. Y. Mine, S. Matsumoto, and Z. Horita: Corrosion Sci., 2011, in press.

  74. M. Nagumo, T. Ishikawa, T. Endoh, and Y. Inoue: Scripta Mater., 2003, vol. 49, pp. 837–42.

    Article  CAS  Google Scholar 

  75. K. Katagiri, J. Awatani, K. Koyanagi, Y. Onishi, and M. Tsuji: Metall. Trans. A, 1980, vol. 11A, pp. 2029–32.

    CAS  Google Scholar 

  76. K. Katagiri, J. Awatani, K. Koyanagi, Y. Onishi, and M. Tsuji: Met. Sci., 1980, vol. 14, pp. 485–92.

    CAS  Google Scholar 

  77. Z.X. Tong and J.P. Bailon: Fatigue Fract. Eng. Mater. Struct., 1995, vol. 18, pp. 847–59.

    CAS  Google Scholar 

  78. P. Lukas and L. Kunz: Mater. Sci. Eng., 1984, vol. 62, pp. 149–57.

    Article  CAS  Google Scholar 

  79. J.C. Grosskreutz and P. Waldow: Acta Metall., 1963, vol. 11, pp. 717–24.

    Article  Google Scholar 

  80. W. Vogel, M. Wilhelm, and V. Gerold: Acta Metall., 1982, vol. 30, pp. 21–30.

    Article  CAS  Google Scholar 

  81. S. Karashima, H. Oikava, and T. Ogura: Trans. Jpn. Inst. Metals, 1968, vol. 3, pp. 205–13.

    Google Scholar 

  82. R.J.H. Wanhill: Metall. Trans. A, 1975, vol. 6A, pp. 1587–96.

    CAS  Google Scholar 

  83. Y. Takahashi, H. Nishikawa, Y. Oda, and H. Noguchi: Mater. Lett., 2010, vol. 64, pp. 2416–19.

    Article  CAS  Google Scholar 

  84. Y. Takahashi, M. Tanaka, K. Higashida, K. Yamaguchi, and H. Noguchi: Acta Mater., 2010, vol. 58, pp. 1972–81.

    Article  CAS  Google Scholar 

  85. B.W. Kempshall, L.A. Giannuzzi, B.I. Prenitzer, F.A. Stevie, and S.X. Da: J. Vac. Sci. Technol. B, 2002, vol. 20, pp. 286–90.

    Article  CAS  Google Scholar 

  86. T. Herlihy: M.S. Thesis, University of Virginia, Charlottesville, VA, 2005.

  87. J.M. Cairney and P.R. Munroe: Mater. Charact., 2001, vol. 46, pp. 297–304.

    Article  CAS  Google Scholar 

  88. J.M. Cairney, P.R. Munroe, and J.H. Schneibel: Scripta Mater., 2000, vol. 42, pp. 473–78.

    Article  CAS  Google Scholar 

  89. J.M. Cairney, R.D. Smith, and P.R. Munroe: Microsc. Microanal., 2000, vol. 6, pp. 452–62.

    CAS  Google Scholar 

  90. Y.Z. Huang, S. Lozano-Perez, R.M. Langford, J.M. Titchmarsh, and M.L. Jenkins: J. Microscopy, 2002, vol. 207, pp. 129–36.

    Article  CAS  Google Scholar 

  91. R.M. Langford and A.K. Petford-Long: J. Vac. Sci. Technol., 2001, vol. 19, pp. 2186–93.

    Article  CAS  Google Scholar 

  92. J. Li, T. Malis, and S. Dionne: Mater. Charact., 2006, vol. 57, pp. 64–70.

    Article  CAS  Google Scholar 

  93. C.A. Volkert and A.M. Minor: MRS Bulletin, 2007, vol. 32, pp. 389–95.

    Article  CAS  Google Scholar 

  94. M. Ando, Y. Katoh, H. Tanigawa, and A. Kohyama: J. Nucl. Mater., 1999, vol. 272, pp. 111–14.

    Article  Google Scholar 

  95. H.D. Chandler and J.V. Bee: Acta Metall., 1987, vol. 35, pp. 2503–10.

    Article  CAS  Google Scholar 

  96. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–96.

    Article  CAS  Google Scholar 

  97. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  98. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1998, vol. 46, pp. 1749–55.

    Article  CAS  Google Scholar 

  99. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991–98.

    Article  CAS  Google Scholar 

  100. R.A. Oriani: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, and J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 351–57.

  101. M. Murayama, Z. Horita, and K. Hono: Acta Mater., 2001, vol. 49, pp. 21–29.

    Article  CAS  Google Scholar 

  102. R.C. McClung: Proc. Fatigue ’96: 6th Int/ Fatigue Conf., 1996, vol. 1, G. Lutjering and H. Nowak, eds., Pergamon, Berlin, Germany, pp. 345–56.

  103. V.K. Gupta and S.R. Agnew: Int. J. Fatigue, 2012, in press.

  104. M.A. Wilkins and G.G. Smith: Acta Metall., 1970, vol. 18, pp. 1035–43.

    Article  CAS  Google Scholar 

  105. H.K. Birnbaum and P. Sofronis: Mater. Sci. Eng. A, 1994, vol. 176, pp. 191–202.

    Article  CAS  Google Scholar 

  106. G.M. Bond, I.M. Robertson, and H.K. Birnbaum: Acta Metall., 1987, vol. 35, pp. 2289–96.

    Article  CAS  Google Scholar 

  107. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Acta Mater., 1999, vol. 47, pp. 2991–98.

    Article  CAS  Google Scholar 

  108. R.A. Oriani: Stress Corrosion Cracking and Hydrogen Embrittlement of Iron-base Alloys, R.W. Staehle, J. Hochmann, R.D. McCright, and J.E. Slater, eds., NACE, Houston, TX, 1977, pp. 351–57.

  109. D. Kuhlmann-Wilsdorf and C. Laird: Mater. Sci. Eng., 1977, vol. 27, pp. 137–56.

    Article  CAS  Google Scholar 

  110. D. Kuhlmann-Wilsdorf and C. Laird: Mater. Sci. Eng., 1980, vol. 46, pp. 209–19.

    Article  CAS  Google Scholar 

  111. D. Kuhlmann-Wilsdorf, H.G.F. Wilsdorf, and J.A. Wert: Scripta Metall. Mater., 1994, vol. 31, pp. 729–34.

    Article  CAS  Google Scholar 

  112. D. Kuhlmann-Wilsdorf: Scripta Mater., 1996, vol. 34, pp. 641–50.

    Article  CAS  Google Scholar 

  113. K. Katagiri, A. Omura, K. Koyanagi, J. Awatani, T. Shiraishi, and H. Kaneshiro: Metall. Trans. A, 1977, vol. 8A, p. 1769.

    CAS  Google Scholar 

  114. K. Katagiri, J. Awatani, K. Koyanagi, Y. Onishi, and M. Tsuji: Metall. Trans. A, 1980, vol. 11A, pp. 2029–32.

    CAS  Google Scholar 

  115. K. Katagiri, J. Awatani, K. Koyanagi, Y. Onishi, and M. Tsuji: Met. Sci., 1980, vol. 14, pp. 485–92.

    CAS  Google Scholar 

  116. C. Laird, J.M. Finney, and D. Kuhlmann-Wilsdorf: Mater. Sci. Eng., 1981, vol. 50, pp. 127–36.

    Article  CAS  Google Scholar 

  117. D.A. Koss and K.S. Chan: Acta Metall., 1980, vol. 28, pp. 1245–52.

    Article  CAS  Google Scholar 

  118. G. Girardin and D. Delafosse: Mater. Sci. Eng. A, 2004, vols. 387–389, pp. 51–54.

    Google Scholar 

  119. D. Delafosse: Gaseous Hydrogen Embrittlement of Materials in Energy Technologies, R.P. Gangloff and B.P Somerday, eds., Woodhead Publishing, Ltd., Cambridge, UK, 2012.

  120. P.J. Ferreira, I.M. Robertson, and H.K. Birnbaum: Intergranular and Interphase Boundaries in Materials, Part 1, Transtech Publications Ltd., Zurich, Switzerland, 1996, pp. 93–96.

    Google Scholar 

  121. I.M. Robertson: Eng. Fract. Mech., 2001, vol. 68, pp. 671–92.

    Article  Google Scholar 

  122. G.M. Pressouyre: Acta Metall., 1980, vol. 28, pp. 895–911.

    Article  CAS  Google Scholar 

  123. Y.J. Ro, M.R. Begley, R.P. Gangloff, and S.R. Agnew: Mater. Sci. Eng. A, 2006, vols. 435–436, pp. 333–42.

  124. M.R. Begley, S.R. Agnew, U. Komaragiri, and R.P. Gangloff: Int. Congress on Fracture 11, A. Carpinteri, ed., Elsevier Science, Oxford, UK, 2004, Paper No. 5505, CD.

  125. U. Komaragiri, S.R. Agnew, R.P. Gangloff, and M.R. Begley: J. Mech. Phys. Solid., 2008, vol. 56, pp. 3527–40.

    Article  CAS  Google Scholar 

  126. A.K. Vasudevan: U.S. Patent No. 7889840, 2011.

  127. K. Sadananda and A.K. Vasudevan: Int. J. Fatigue, 2004, vol. 26, pp. 39–47.

    Article  Google Scholar 

  128. A. Shyam, J.E. Allison, C.J. Szczepanski, T.M. Pollock, and J.W. Jones: Acta Mater., 2007, vol. 55, pp. 6606–16.

    Article  CAS  Google Scholar 

  129. A. Shyam and E. Lara-Curzio: Int. J. Fatigue, 2010, vol. 32, pp. 1843–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Air Force Office of Scientific Research (grant F49620-03-1-0155) with Drs. Hartley, Tiley, and Conner as program managers, and by the Defense Advanced Research Projects Agency (contract HR0011-04-C-0003) with Dr. Leo Christodoulou as the DARPA program manager and Drs. John Papazian and Elias Anagnostou as the Northrop Grumman technical managers. R.P. Gangloff was also supported by funding from the Alcoa Technical Center with Dr. Gary Bray as scientific monitor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean R. Agnew.

Additional information

Manuscript submitted May 27, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ro, Y., Agnew, S.R. & Gangloff, R.P. Effect of Environment on Fatigue Crack Wake Dislocation Structure in Al-Cu-Mg. Metall Mater Trans A 43, 2275–2292 (2012). https://doi.org/10.1007/s11661-012-1089-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1089-5

Keywords

Navigation