Skip to main content
Log in

In situ X-Ray Diffraction Analysis of Carbon Partitioning During Quenching of Low Carbon Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In situ X-ray diffraction investigations of phase transformations during quenching of low carbon steel were performed at the European Synchrotron Radiation Facility (ESRF, Grenoble, France) at beamline ID11. A dynamic stabilization of the retained austenite during cooling below martensite start was identified, resulting in an amount of retained austenite of approximately 4 vol pct. The reason for this dynamic stabilization is a carbon partitioning occurring directly during quenching from martensite (and a small amount of bainite) into retained austenite. A carbon content above 0.5 mass pct was determined in the retained austenite, while the nominal carbon content of the steel was 0.2 mass pct. The martensitic transformation kinetic was compared with the models of Koistinen-Marburger and a modification proposed by Wildau. The analysis revealed that the Koistinen-Marburger equation does not provide reliable kinetic modeling for the described experiments, while the modification of Wildau well describes the transformation kinetic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G.B. Olson and W.S. Owen: Martensite, 1st ed., ASM International, Materials Park, OH, 1992.

  2. S.G. Fletcher: The Tempering of Plain Carbon Steels, Carnegie Institute of Technology, Pittsburgh, PA, 1938.

  3. Z. Nishiyama, M.E. Fine, M. Meshii, and C.M. Wayman: Martensitic Transformation, Academic Press, New York, NY, 1978.

    Google Scholar 

  4. G.V. Kurdjumov and A.G. Khachaturyan: Acta Metall., 1975, vol. 23, pp. 1077–88.

    Article  Google Scholar 

  5. G.V. Kurdjumov: Metall. Trans. A, vol. 7A, 1976, pp. 999–1011.

  6. Metals Handbook: Properties and Selection: Irons, Steels, and High-Performance Alloys, 10th ed., vol. 1, ASM International, Materials Park, OH, 1990.

  7. F. Frerichs, T. Lübben, U. Fritsching, H. Lohner, A. Rocha, G. Löwisch, F. Hoffmann, and P. Mayr: J. Phys. IV, 2004, vol. 120, pp. 727–35.

    CAS  Google Scholar 

  8. C. Acht, B. Clausen, F. Hoffmann, and H.W. Zoch: Proc. 1st Int. Conf. on Distortion Engineering, H.W. Zoch and T. Lübben, eds., Bremen, Germany, 2005, pp. 251–58.

    Google Scholar 

  9. F. Frerichs, T. Lübben, F. Hoffmann, and H.-W. Zoch: Num. Steel Res. Int., 2007, vol. 78, no. 7, pp. 558–63.

    Google Scholar 

  10. D.H. Sherman, S.M. Cross, S. Kim, F. Grandjean, G.J. Long, and M.K. Miller: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1698–711.

    Article  CAS  Google Scholar 

  11. M. Sariyaka, G. Thomas, J.W. Steeds, S.J. Barnard, and G.D.W. Smith: International Conference on Solid to Solid Phase Transformations, H.I. Aaronson, ed., TMS, Warrendale, PA, 1982, pp. 1421–25.

  12. S. Chupatanakul, P. Nash, and D. Chen: Metall. Mater. Int., 2006, vol. 12, no.6, pp. 453–58.

    Article  CAS  Google Scholar 

  13. A.J. Clarke, J.G. Speer, M.K. Miller, R.E. Hackenberg, D.V. Edmonds, D.K. Matlock, F.C. Rizzo, K.D. Clarke, and E. De Moor: Acta Mater., 2008, vol. 56, pp. 16–22.

    Article  CAS  Google Scholar 

  14. D.V. Edmonds, K. He, F.C. Rizzo, B.C. De Cooman, D.K. Matlock, and J.G. Speer: Mater. Sci. Eng. A, 2006, vols. 438–40, pp. 25–34.

    Google Scholar 

  15. J. Epp, H. Surm, O. Kessler, and T. Hirsch: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2371–78.

    Article  CAS  Google Scholar 

  16. J. Epp, H. Surm, O. Kessler, and T. Hirsch: Acta Mater., 2007, pp. 5517, 5959–67.

  17. J.-C. Labiche, O. Mathon, S. Pascarelli, M.A. Newton, G.G. Ferre, C. Curfs, G. Vaughan, and A. Homs: Review Sci. Inst., 2007, vol. 78, pp. 1–11.

    Google Scholar 

  18. A. Hammersley, S.O. Svensson, and A. Thompson: Nucl. Instrum. Methods, 1994, vol. A, no. 346, p. 312.

    Google Scholar 

  19. B.E. Warren: X-Ray Diffraction, Addison-Weseley, Reading, MA, 1969.

  20. E.C. Bain: The Alloying Elements in Steel, ASM International, Materials Park, OH, 1939.

  21. Doerrenberg Edelstahl – Datasheet 21MnCr5, http://www.doerrenberg.de/fileadmin/template/doerrenberg/stahl/DatenblaetterEng/1.2162_en.pdf, 08.30.2011.

  22. S. Khare, K. Lee, and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 922–28.

    Article  CAS  Google Scholar 

  23. L. Cheng, A. Böttger, T.H. de Keijser, and E.J. Mittemeijer: Scripta Metall. Mater., 1990, vol. 24, pp. 509–14.

  24. M. Onink, C.M. Brakman, F.D. Tichelaar, E.J. Mittemeijer, and S. van der Zwaaag: Acta Metall. Mater., 1993, vol. 29, pp. 1011–16.

  25. G.B. Olson, H.K.D.H. Bhadeshia, and M. Cohen: Acta Metall., 1989, vol. 2, no. 37, pp. 381–89.

    Google Scholar 

  26. S.-H. Kanga and Y.-T. Imb: J. Mater. Proc. Tech., 2007, vol. 183, pp. 241–44.

    Article  Google Scholar 

  27. J.W. Janga, I.-W. Parkb, K.H. Kimb, and S.S. Kanga: J. Mater. Proc. Tech., 2002, vols. 130–131, pp. 546–50.

  28. D.P. Koistinen and R.E. Marburger: Acta Metall., 1959, vol. 7, pp. 59–60.

    Article  Google Scholar 

  29. M. Wildau: Ph.D. Dissertation, Technical University of Aachen, Aachen, Germany, 1986.

Download references

Acknowledgments

The authors gratefully acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support of project C2 in the Collaborative Research Centre 570 “Distortion Engineering” and the European Synchrotron Radiation Facility (ESRF) for provision of synchrotron radiation facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérémy Epp.

Additional information

Manuscript submitted November 29, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Epp, J., Hirsch, T. & Curfs, C. In situ X-Ray Diffraction Analysis of Carbon Partitioning During Quenching of Low Carbon Steel. Metall Mater Trans A 43, 2210–2217 (2012). https://doi.org/10.1007/s11661-012-1087-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-012-1087-7

Keywords

Navigation