Skip to main content
Log in

Growth Kinetics of Proeutectoid Ferrite in Fe-0.1C-1.5Mn-1Si Quaternary and Fe-0.1C-1.5Mn-1Si-0.2Al Quinary Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The growth kinetics of proeutectoid ferrite in the early stages of transformation were studied in Fe-0.1C-1.5Mn-1Si (mass pct) quaternary and Fe-0.1C-1.5Mn-1Si-0.2Al quinary alloys. The observed kinetic transition temperatures from partitioned slow growth to unpartitioned fast growth of ferrite in both alloys are in good agreement with predictions using a local equilibrium model for multicomponent systems. The measured parabolic growth rate constants were smaller than those calculated assuming paraequilibrium in the unpartitioned growth region, but the difference between the measured and the calculated growth rate constants gradually diminished with a decreasing reaction temperature. The dissipation of driving force, derived from the diffusion of the substitutional solute within the transformation interface, possibly constitutes a major part of the discrepancy between the measured and the calculated growth kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The Wagner’s interaction parameter in austenite between the ith and jth solutes is defined as \( \varepsilon_{ij} = \lim_{{x_{\text{Fe}} \to 1}} \frac{{\partial \ln \gamma_{i} }}{{\partial x_{j} }} \), where γ i is the activity coefficient of the ith solute in austenite. In view of the lack of experimental data, lnγ i /∂x j was calculated using ThermoCalc software as a crude estimate. Assuming ε ij is inversely proportional to the temperature,[33] the temperature dependence of ε ij was obtained via regression analysis.

References

  1. C. Zener: Trans. AIME, 1946, vol.167, pp.550–95.

    Google Scholar 

  2. G.R. Purdy and J.S. Kirkaldy: Trans. TMS-AIME, 1963, vol. 227, pp. 1255–66.

    CAS  Google Scholar 

  3. S. Crusius, L. Hogland, U. Knoop, G. Inden, and J. Agren: Z. Metallkd., 1992, vol. 83, pp. 729–38.

    CAS  Google Scholar 

  4. M. Hillert: The Mechanism of Phase Transformations in Crystalline Solids, Institute of Metals, London, 1969, pp. 231–47.

    Google Scholar 

  5. J.S. Kirkaldy: Can. J. Phys., 1958, vol. 36, pp. 907–16.

    Article  CAS  Google Scholar 

  6. G.R. Purdy, D.H. Weichert, and J.S. Kirkaldy: Trans. TMS-AIME, 1964, vol. 230, pp. 1025–34.

    CAS  Google Scholar 

  7. D.E. Coates: Metall. Trans., 1972,vol. 3, pp. 1203–12.

    Article  CAS  Google Scholar 

  8. D.E. Coates: Metall. Trans., 1973, vol. 4, pp. 1077–86.

    Article  CAS  Google Scholar 

  9. D.E. Coates: Metall. Trans. 1973, vol. 4, pp. 2313–25.

    Article  CAS  Google Scholar 

  10. A. Hultgren: Trans. ASM, 1947, vol. 39, pp. 915–1005.

    Google Scholar 

  11. M. Hillert: Paraequilibrium, Internal Report, Swedish Institute for Metal Research, Stockholm, Sweden, 1953.

    Google Scholar 

  12. K.R. Kinsman and H.I. Aaronson: Metall. Trans., 1973, vol. 4, pp. 959–67.

    Article  CAS  Google Scholar 

  13. J.R. Bradley and H.I. Aaronson: Metall. Mater. Trans. A, 1981, vol. 12A, pp. 1729–41.

    Google Scholar 

  14. K. Oi, C. Lux, and G.R. Purdy: Acta Mater., 2000, vol. 48, pp. 2142–57.

    Article  Google Scholar 

  15. M. Enomoto: Trans. ISIJ, 1988, vol. 28, pp. 826–35.

    Article  CAS  Google Scholar 

  16. G.R. Purdy and Y.J.M. Brechet, Acta Metall. Mater., 1995, vol. 43, pp. 3763–74.

    Article  CAS  Google Scholar 

  17. M. Enomoto: Acta Mater., 1999, vol. 47, pp. 3533–40.

    Article  CAS  Google Scholar 

  18. T. Tanaka, H.I. Aaronson, and M. Enomoto: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 561–80.

    Article  CAS  Google Scholar 

  19. H. Guo and M. Enomoto, Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1721–29.

    Article  CAS  Google Scholar 

  20. R. Wei, K. Kanno, and M. Enomoto: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 2189–98.

    Article  Google Scholar 

  21. D.W. Suh, S.J. Park, C.S. Oh, and S.J. Kim: Script. Mater., 2007, vol. 57, pp. 1097–1100.

    Article  CAS  Google Scholar 

  22. D.W. Suh, S.J. Park, T.H. Lee, C.S. Oh, and S.J. Kim: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 397–408.

    Article  CAS  Google Scholar 

  23. R. Wei, and M. Enomoto: Metall. Mater. Trans. A. In press.

  24. X. Sun, H. Dong, Q. Liu, and Y. Weng: Mater. Sci. Eng. A, 2008, vol.487, pp. 93–98.

    Article  Google Scholar 

  25. Y. Liu, D. Wang, F. Sommer, and E.J. Mittemeijer: Acta Mater., 2008, vol. 56, pp. 3833–42.

    Article  CAS  Google Scholar 

  26. J. Fridberg, L.-E. Torndahl, and M. Hillert: Jernkontorets Ann., 1969, vol. 153, pp. 263–76.

    CAS  Google Scholar 

  27. H.I. Aaronson and H.A. Domain: Trans. TMS-AIME, 1966, vol. 236, pp. 781–96.

    CAS  Google Scholar 

  28. M. Enomoto and H.I. Aaronson: Metall. Mater. Trans. A, 1987, vol. 18A, pp. 1547–57.

    CAS  Google Scholar 

  29. G.H. Zhang, M. Enomoto, N. Hosokawa, M. Kagayama, and Y. Adachi: J. Magn. Magn. Mater., 2009, vol. 321, pp. 4010–16.

    Article  CAS  Google Scholar 

  30. H. Guo and M. Enomoto: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1152–61.

    Article  CAS  Google Scholar 

  31. M. Hillert and B. Sundman: Acta Metall., 1976, vol. 24, pp. 731–43.

    Article  CAS  Google Scholar 

  32. M. Enomoto, N. Nojiri, and Y. Sato: Mater. Trans. JIM, 1994, vol. 35, pp. 859–67.

    CAS  Google Scholar 

  33. J.S. Kirkaldy, B.A. Thomson, and E.A. Baganis: Hardenability Concepts with Applications to Steel, D.V. Doane and J.S. Kirkaldy, eds., TMS-AIME, Warrendale, PA, 1978, pp. 82–125.

  34. C.R. Hutchison, A. Fuchsmann, and Y. Brechet: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 1211–21.

    Article  Google Scholar 

  35. A. Beche, H.S. Zurob, and C.R. Hutchison: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 2950–55.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

G.H. Zhang is grateful to professor N.J. Kim for the provision of laboratory facilities at GIFT, POSTECH. D.W. Suh appreciates the financial support from POSCO through Steel Innovation Program. The authors are grateful to Professor H.K.D.H. Bhadeshia for careful reading of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. H. Zhang.

Additional information

Manuscript submitted July 13, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, G.H., Wei, R., Enomoto, M. et al. Growth Kinetics of Proeutectoid Ferrite in Fe-0.1C-1.5Mn-1Si Quaternary and Fe-0.1C-1.5Mn-1Si-0.2Al Quinary Alloys. Metall Mater Trans A 43, 833–842 (2012). https://doi.org/10.1007/s11661-011-1000-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-1000-9

Keywords

Navigation