Skip to main content
Log in

Modeling and Prediction of Hot Deformation Flow Curves

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The modeling of hot flow stress and prediction of flow curves for unseen deformation conditions are important in metal-forming processes because any feasible mathematical simulation needs accurate flow description. In the current work, in an attempt to summarize, generalize, and introduce efficient methods, the dynamic recrystallization (DRX) flow curves of a 17-4 PH martensitic precipitation hardening stainless steel, a medium carbon microalloyed steel, and a 304 H austenitic stainless steel were modeled and predicted using (1) a hyperbolic sine equation with strain dependent constants, (2) a developed constitutive equation in a simple normalized stress-normalized strain form and its modified version, and (3) a feed-forward artificial neural network (ANN). These methods were critically discussed, and the ANN technique was found to be the best for the modeling available flow curves; however, the developed constitutive equation showed slightly better performance than that of ANN and significantly better predicted values than those of the hyperbolic sine equation in prediction of flow curves for unseen deformation conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Y.C. Lin and X.M. Chen: Mater. Des., 2011, vol. 32, pp. 1733-59.

    Article  CAS  Google Scholar 

  2. C. Zener and J.H. Hollomon: J. Appl. Phys., 1944, vol. 15, pp. 22-32.

    Article  Google Scholar 

  3. C.M. Sellars, W.J. McG Tegart: Mem. Sci. Rev. Metall., 1966, 63, 731-46.

    CAS  Google Scholar 

  4. C.M. Sellars and W.J. McG Tegart: Acta Metall., 1966, vol. 14, pp. 1136-38.

    Article  CAS  Google Scholar 

  5. H.J. McQueen, W.A. Wong, and J.J. Jonas: Can. J. Phys., 1967, vol. 45, pp. 1225-34.

    Article  CAS  Google Scholar 

  6. J.L. Uvira and J.J. Jonas: Trans. TMS-AIME, 1968, vol. 242, pp. 1619-26.

    CAS  Google Scholar 

  7. W.A. Wong and J.J. Jonas: Trans. TMS-AIME, 1968, vol. 242, pp. 2271-80.

    CAS  Google Scholar 

  8. J.J. Jonas, C.M. Sellars, and W.J. McG Tegart: Metall. Rev., 1969, vol. 14, pp. 1-24.

    Google Scholar 

  9. J.J. Jonas: Trans. TMS-AIME, 1969, vol. 62, pp. 300-03.

    Google Scholar 

  10. F. Garofalo: Trans. TMS-AIME, 1963, vol. 227, pp. 351-55.

    Google Scholar 

  11. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A, 2002, vol. 322, pp. 43-63.

    Article  Google Scholar 

  12. H. Mirzadeh, A. Najafizadeh, and M. Moazeny: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 2950-58.

    Article  CAS  Google Scholar 

  13. O.D. Sherby and P.M. Burke: Prog. Mater. Sci., 1968, vol. 13, pp. 325-90.

    Article  Google Scholar 

  14. H. Luthy, A.K. Miller, and O.D. Sherby: Acta Metall., 1980, vol. 28, pp. 169-78.

    Article  CAS  Google Scholar 

  15. A.K. Mukherjee, J.E. Bird, and J.E. Dorn: Trans. TMS-AIME, 1969, vol. 62, pp.155-79.

    CAS  Google Scholar 

  16. A.K. Mukherjee: Mater. Sci. Eng. A, 2002, vol. 322, pp. 1-22.

    Article  Google Scholar 

  17. J.M. Cabrera, A. Al Omar, J.M. Prado, and J.J. Jonas: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 2233-44.

    Article  CAS  Google Scholar 

  18. J.M. Cabrera, J.J. Jonas, and J.M. Prado: Mater. Sci. Technol., 1996, vol. 12, pp. 579-85.

    CAS  Google Scholar 

  19. J.M. Cabrera: Ph.D. Dissertation, Universitat Politècnica de Catalunya, Barcelona, Spain, 1995.

  20. H.J. Frost and M.F. Ashby: Deformation-Mechanism maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, Oxford, UK, 1982.

  21. K.P. Rao and E.B. Hawbolt: J. Eng. Mater. Technol., 1992, vol. 114, pp. 116-23.

    Article  CAS  Google Scholar 

  22. K.P. Rao and E.B. Hawbolt: J. Mater. Process. Technol., 1992, vol. 29, pp. 15-40.

    Article  Google Scholar 

  23. H. Mirzadeh and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1160-64.

    Article  Google Scholar 

  24. Y.C. Lin, M.S. Chen, and J. Zhong: Comput. Mater. Sci., 2008, vol. 42, pp. 470-77.

    Article  CAS  Google Scholar 

  25. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan: Mater. Sci. Eng. A, 2009, vol. 500, pp. 114-21.

    Article  Google Scholar 

  26. P.D. Hodgson, L.X. Kong, and C.H.J. Davies: J. Mater. Process. Technol., 1999, vol. 87, pp. 131-38.

    Article  Google Scholar 

  27. Y. Estrin and H. Mecking: Acta Metall., 1984, vol. 32, pp. 57-70.

    Article  Google Scholar 

  28. J.J. Jonas, X. Quelennec, L. Jiang, and E. Martin: Acta Mater., 2009, vol. 57, pp. 2748-56.

    Article  CAS  Google Scholar 

  29. A.N. Kolmogorov: Izv. Akad. Nauk SSSR Ser. Mat., 1937, vol. 3, pp. 335–60.

  30. M. Avrami: J. Chem. Phys., 1939, vol. 7, pp. 1103-12.

    Article  CAS  Google Scholar 

  31. W.A. Johnson and R.F. Mehl: Trans. AIME, 1939, vol. 135, pp. 416-42.

    Google Scholar 

  32. M. Avrami: J. Chem. Phys., 1940, vol. 8, pp. 212-24.

    Article  CAS  Google Scholar 

  33. C. Huang, E.B. Hawbolt, X. Chen, T.R. Meadowcroft, and D.K. Matlock: Acta Mater., 2001, vol. 49, pp. 1445-52.

    Article  CAS  Google Scholar 

  34. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 4577-83.

    Article  CAS  Google Scholar 

  35. H. Mirzadeh and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1856-60.

    Article  Google Scholar 

  36. Y.C. Lin, M.S. Chen, and J. Zhang: Mech. Res. Commun., 2008, vol. 35, pp.142-50.

    Article  Google Scholar 

  37. A.M. Jorge Jr, O. Balancin: Mater. Res., 2005, vol. 8, pp. 309-15.

    Google Scholar 

  38. S. Serajzadeh and A. KarimiTaheri: Mech. Res. Commun., 2003, vol. 30, pp. 87-93.

    Article  Google Scholar 

  39. C.A. Hernandez, S.F. Medina, and J. Ruiz: Acta Mater., 1996, vol. 44, pp. 155-63.

    Article  CAS  Google Scholar 

  40. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1359-70.

    Article  CAS  Google Scholar 

  41. A. Cingara and H.J. McQueen: J. Mater. Process. Technol., 1992, vol. 36, pp. 31-42.

    Article  Google Scholar 

  42. C.M. Bishop: Neural Networks for Pattern Recognition, Clarendon Press, Oxford, UK, 1995.

  43. H.K.D.H. Bhadeshia: ISIJ Int., 1999, vol. 39, pp. 966-79.

    Article  CAS  Google Scholar 

  44. K.P. Rao and Y.K.D.V. Prasad: J. Mater. Process. Technol., 1995, vol. 53, pp. 552-66.

    Article  Google Scholar 

  45. M.P. Phaniraj and A.K. Lahiri: J. Mater. Process. Technol., 2003, vol. 141, pp. 219-27.

    Article  CAS  Google Scholar 

  46. X. He, Z. Yu, and X. Lai: Mater. Lett., 2008, vol. 62, pp. 4181-83.

    Article  CAS  Google Scholar 

  47. L. Ping, X. Kemin, L. Yan, and T. Jianrong: J. Mater. Process. Technol., 2004, vol. 148, pp. 235-38.

    Article  Google Scholar 

  48. N.S. Reddy, Y.H. Lee, C.H. Park, and C.S. Lee: Mater. Sci. Eng. A, 2008, vol. 492, pp. 276-82.

    Article  Google Scholar 

  49. R. Kapoor, D. Pal, and J.K. Chakravartty: J. Mater. Process. Technol., 2005, vol. 169, pp. 199-205.

    Article  CAS  Google Scholar 

  50. G.R. Johnson and W.H. Cook: Proc. 7th Int. Symp. on Ballistics, Hague, the Netherlands, 1983, pp. 541-43.

    Google Scholar 

  51. A.S. Khan and S. Huang: Int. J. Plast., 1992, vol. 8, pp. 397-424.

    Article  CAS  Google Scholar 

  52. A.S. Khan, H.Y. Zhang, and L. Takacs: Int. J. Plast., 2000, vol. 16, pp. 1459-76.

    Article  CAS  Google Scholar 

  53. A.S. Khan, Y.S. Suh, and R. Kazmi: Int. J. Plast., 2004, vol. 20, pp. 2233-48.

    Article  CAS  Google Scholar 

  54. A.S. Khan, Y.S. Suh, X. Chen, L. Takacs, and H.Y. Zhang: Int. J. Plast., 2006, vol. 22, pp. 195-209.

    Article  CAS  Google Scholar 

  55. B. Farrokh and A.S. Khan: Int. J. Plast., 2009, vol. 25, pp. 715-32.

    Article  CAS  Google Scholar 

  56. D.S. Fields and W.A. Bachofen: Trans. ASTM, 1957, vol. 57, pp.1259-72.

    Google Scholar 

  57. A. Molinari and G. Ravichandran: Mech. Mater., 2005, vol. 37, pp. 737-52.

    Article  Google Scholar 

  58. E. Voce: J. Inst. Met., 1948, vol. 74, pp. 537-62.

    CAS  Google Scholar 

  59. U.F. Kocks: J. Eng. Mater. Technol., 1976, vol. 98, pp. 76-85.

    Article  CAS  Google Scholar 

  60. P.J. Zerilli and R.W. Armstrong: J. Appl. Phys., 1987, vol. 61, pp. 1816-25.

    Article  CAS  Google Scholar 

  61. D.L. Preston, D.L. Tonks, and D.C. Wallace: J. Appl. Phys., 2003, vol. 93, pp. 211-20.

    Article  CAS  Google Scholar 

  62. A. Rusinek and J.R. Klepaczko: Int. J. Plast., 2001, vol. 17, pp. 87-115.

    Article  CAS  Google Scholar 

  63. G.Z. Voyiadjis and A.H. Almasri: Mech. Mater., 2008, vol. 40, pp. 549-63.

    Article  Google Scholar 

  64. S.R. Bodner and Y. Partom: J. Appl. Mech., 1975, vol. 42, pp. 385-89.

    Article  Google Scholar 

  65. R.L. Goetz and V. Seetharaman: Scripta Mater., 1998, vol. 38, pp. 405-13.

    Article  CAS  Google Scholar 

  66. R. Herbertz and H. Wiegels: Stahl und Eisen., 1981, vol. 101, pp. 89-92.

    Google Scholar 

  67. A. Najafizadeh and J. J. Jonas: ISIJ Int., 2006, vol. 46, pp. 1679-84.

    Article  CAS  Google Scholar 

  68. A. Najafizadeh, J.J. Jonas, G.R. Stewart, and E.I. Poliak: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 1899-1906.

    Article  CAS  Google Scholar 

  69. H.J. McQueen: Met. Forum, 1981, vol. 4, pp. 81-91.

    CAS  Google Scholar 

  70. N.D. Ryan and H.J. McQueen: Can. Metall. Q., 1990, vol. 29, pp. 147-62.

    CAS  Google Scholar 

  71. E.I. Poliak and J.J. Jonas: Acta Mater., 1996, vol. 44, pp. 127-36.

    Article  CAS  Google Scholar 

  72. E.I. Poliak and J.J. Jonas: ISIJ Int., 2003, vol. 43, pp. 684-91.

    Article  CAS  Google Scholar 

  73. T. Sakai and J.J. Jonas: Acta Metall., 1984, vol. 32, pp. 189-209.

    Article  CAS  Google Scholar 

  74. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 1174-79.

    Article  CAS  Google Scholar 

  75. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.

    Article  CAS  Google Scholar 

  76. C.M. Sellars: Met. Forum, 1981, vol. 4, pp. 75-80.

    CAS  Google Scholar 

  77. G. Gottstein, D. Zabardjadi, and H. Mecking: Met. Sci., 1979, vol. 13, pp. 223-27.

    CAS  Google Scholar 

  78. R. Sandström and R. Lagneborg: Acta Metall., 1975, vol. 23, pp. 481-88.

    Article  Google Scholar 

  79. W. Roberts and B. Ahlblom: Acta Metall., 1978, vol. 26, pp. 801-13.

    Article  CAS  Google Scholar 

  80. G.J Richardson, C.M Sellars, and W.J.McG Tegart: Acta Metall., 1966, vol. 14, pp. 1225–36.

  81. C. Ouchi and T. Okita: Trans. ISIJ, 1982, vol. 22, pp. 543-51.

    Article  CAS  Google Scholar 

  82. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, UK, 2004.

  83. H.J. McQueen and S. Bergerson: Met. Sci., 1972, vol. 6, pp. 25-9.

    Article  CAS  Google Scholar 

  84. M. Ueki, S. Horie, and T. Nakamura: Mater. Sci. Technol., 1987, vol. 3, pp. 329- 37.

    CAS  Google Scholar 

  85. G. Gottstein, L. Chang, and H.F. Yung: Mater. Sci. Technol., 1991, vol. 7, pp. 158-66.

    CAS  Google Scholar 

  86. J.P. Sah, G.J. Richardson, and C.M. Sellars: Met. Sci., 1974, vol. 8, pp. 325-31.

    CAS  Google Scholar 

  87. C. Rossard and P. Blain: Mem. Sci. Rev. Metall., 1959, vol. 56, pp. 285-300.

    Google Scholar 

  88. M.J. Luton and C.M. Sellars: Acta Metall., 1969, vol. 17, pp. 1033-43.

    Article  CAS  Google Scholar 

  89. S. Sakui, T. Sakai, and K. Takeishi: Trans. ISIJ, 1977, vol. 17, pp. 718-25.

    CAS  Google Scholar 

  90. T. Sakai, M.G. Akben, and J.J. Jonas: Acta Metall., 1983, vol. 31, pp. 631-41.

    Article  CAS  Google Scholar 

  91. C. Roucoules: Ph.D. Dissertation, McGill University, Montreal, Quebec, Canada, 1992.

  92. H.J. McQueen, S. Yue, N.D. Ryan, and E. Fry: J. Mater. Process. Technol., 1995, vol. 53, pp. 293-310.

    Article  Google Scholar 

  93. P. Karduck, G. Gottstein, and H. Mecking: Acta Metall., 1983, vol. 31, pp. 1525-36.

    Article  CAS  Google Scholar 

  94. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219–74.

  95. D.L. Baragar: J. Mech. Work. Technol., 1987, vol. 14, pp. 295-307.

    Article  CAS  Google Scholar 

  96. H. Mirzadeh and A. Najafizadeh: J. Alloys Comp., 2009, vol. 476, pp. 352-55.

    Article  CAS  Google Scholar 

  97. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2009, vol. 30, pp. 570-73.

    Article  CAS  Google Scholar 

  98. H. Mirzadeh and A. Najafizadeh: Mater. Charact., 2008, vol. 59, pp. 1650-54.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Manuscript submitted January 11, 2011.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mirzadeh, H., Cabrera, J.M. & Najafizadeh, A. Modeling and Prediction of Hot Deformation Flow Curves. Metall Mater Trans A 43, 108–123 (2012). https://doi.org/10.1007/s11661-011-0836-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0836-3

Keywords

Navigation