Skip to main content
Log in

High Temperature Deformation Behavior and Constitutive Modeling for Flow Behavior of Alloy 718

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the present work, hot deformation behavior of Alloy 718 was investigated over a temperature range of 1223–1373 K and strain rate range of 10−2–10 s−1. The flow curves were corrected for adiabatic temperature rise, particularly at high strain rates. Arrhenius type constitutive equations were derived for Alloy 718 to model the peak flow stress from apparent and physically based approaches. A stress exponent of 5 was obtained from the power-law equation, indicating that the deformation is governed by the dislocation climb mechanism within the aforementioned processing domain. Further, to model the flow behavior, a generalized constitutive equation was derived in which the effect of strain on the flow stress was incorporated. In addition, artificial neural networks (ANN) method was also employed to model the flow behavior. Statistical parameters such as regression coefficient (R) and average absolute relative error (AARE) indicated that the ANN method was more accurate in predicting the flow behavior with R = 0.99 and AARE = 0.79% compared to the apparent-based constitutive equation with R = 0.99 and AARE = 4.5%. Accuracy of the derived constitutive equation as a material model in finite element (FE) simulation studies was also evaluated. Flow curve predictions obtained from the FE simulation were comparable to the experimental results. The microstructure and hardness at different locations in the deformed samples were consistent with the strain distribution map generated by the FE simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. W.D. Cao and R.L. Kennedy, Superalloys 718, 625, 706 and Various Derivatives, Ed, EA Loria, TMS (2001), p 455–464.

  2. A. Thomas, M. El-Wahabi, J.M. Cabrera, and J.M. Prado, High Temperature Deformation of Inconel 718, J. Mater. Process. Technol., 2006, 177(1–3), p 469–472

    CAS  Google Scholar 

  3. L.C.M. Valle, L.S. Araújo, S.B. Gabriel, J. Dille, and L.H. De Almeida, The Effect of δ Phase on the Mechanical Properties of an Inconel 718 Superalloy, J. Mater. Eng. Perform., 2013, 22(5), p 1512–1518

    CAS  Google Scholar 

  4. M.J. Sohrabi, H. Mirzadeh, and M. Rafiei, Solidification Behavior and Laves Phase Dissolution during Homogenization Heat Treatment of Inconel 718 Superalloy, Vacuum, 2018, 154, p 235–243

    CAS  Google Scholar 

  5. M.J. Sohrabi and H. Mirzadeh, Unexpected Formation of Delta (δ) Phase in as-Cast Niobium-Bearing Superalloy at Solution Annealing Temperatures, Mater. Lett., 2020, 261, p 127008

    CAS  Google Scholar 

  6. S. Azadian, L.-Y. Wei, and R. Warren, Delta Phase Precipitation in Inconel 718, Mater. Charact., 2004, 53(1), p 7–16

    CAS  Google Scholar 

  7. D.D. Krueger, The Development of Direct Age 718 for Gas Turbine Engine Disk Applications, Superalloy 718 Metall. Appl. 279–296 (1989).

  8. H.Y. Zhang, S.H. Zhang, M. Cheng, and Z.X. Li, Deformation Characteristics of δ Phase in the Delta-Processed Inconel 718 Alloy, Mater. Charact., 2010, 61(1), p 49–53. https://doi.org/10.1016/j.matchar.2009.10.003

    Article  CAS  Google Scholar 

  9. H. Zhang, K. Zhang, Z. Lu, C. Zhao, and X. Yang, Hot Deformation Behavior and Processing Map of a γ′-Hardened Nickel-Based Superalloy, Mater. Sci. Eng. A, 2014, 604, p 1–8. https://doi.org/10.1016/j.msea.2014.03.015

    Article  CAS  Google Scholar 

  10. M. Azarbarmas, M. Aghaie-Khafri, J.M. Cabrera, and J. Calvo, Microstructural Evolution and Constitutive Equations of Inconel 718 Alloy under Quasi-Static and Quasi-Dynamic Conditions, Mater. Des., 2016, 94, p 28–38. https://doi.org/10.1016/j.matdes.2015.12.157

    Article  CAS  Google Scholar 

  11. Y.B. Tan, Y.H. Ma, and F. Zhao, Hot Deformation Behavior and Constitutive Modeling of Fine Grained Inconel 718 Superalloy, J. Alloys Compd., 2018, 741, p 85–96

    CAS  Google Scholar 

  12. S.A. Sajjadi, A. Chaichi, H.R. Ezatpour, A. Maghsoudlou, and M.A. Kalaie, Hot Deformation Processing Map and Microstructural Evaluation of the Ni-Based Superalloy IN-738LC, J. Mater. Eng. Perform., 2016, 25(4), p 1269–1275

    CAS  Google Scholar 

  13. A. Amiri, M.H. Sadeghi, and G.R. Ebrahimi, Characterization of Hot Deformation Behavior of AMS 5708 Nickel-Based Superalloy Using Processing Map, J. Mater. Eng. Perform., 2013, 22(12), p 3940–3945

    CAS  Google Scholar 

  14. Z. Shi, X. Yan, C. Duan, C. Tang, and E. Pu, Characterization of the Hot Deformation Behavior of a Newly Developed Nickel-Based Superalloy, J. Mater. Eng. Perform., 2018, 27(4), p 1763–1776

    CAS  Google Scholar 

  15. S.S.S. Kumar, T. Raghu, P.P. Bhattacharjee, G.A. Rao, and U. Borah, Strain Rate Dependent Microstructural Evolution during Hot Deformation of a Hot Isostatically Processed Nickel Base Superalloy, J. Alloys Compd., 2016, 681, p 28–42. https://doi.org/10.1016/j.jallcom.2016.04.185

    Article  CAS  Google Scholar 

  16. Z. Wan, L. Hu, Y. Sun, T. Wang, and Z. Li, Hot Deformation Behavior and Processing Workability of a Ni-Based Alloy, J. Alloys Compd., 2018, 769, p 367–375. https://doi.org/10.1016/j.jallcom.2018.08.010

    Article  CAS  Google Scholar 

  17. S.B. Davenport, N.J. Silk, C.N. Sparks, and C.M. Sellars, Development of Constitutive Equations for Modelling of Hot Rolling, Mater. Sci. Technol., 2000, 16(5), p 539–546. https://doi.org/10.1179/026708300101508045

    Article  CAS  Google Scholar 

  18. J. Luo, M. Li, X. Li, and Y. Shi, Constitutive Model for High Temperature Deformation of Titanium Alloys Using Internal State Variables, Mech. Mater., 2010, 42(2), p 157–165. https://doi.org/10.1016/j.mechmat.2009.10.004

    Article  Google Scholar 

  19. Y.C. Lin, Q.F. Li, Y.C. Xia, and L.T. Li, A Phenomenological Constitutive Model for High Temperature Flow Stress Prediction of Al-Cu-Mg Alloy, Mater. Sci. Eng. A, 2012, 534, p 654–662. https://doi.org/10.1016/j.msea.2011.12.023

    Article  CAS  Google Scholar 

  20. H.Y. Li, D.D. Wei, J.D. Hu, Y.H. Li, and S.L. Chen, Constitutive Modeling for Hot Deformation Behavior of T24 Ferritic Steel, Comput. Mater. Sci., 2012, 53(1), p 425–430. https://doi.org/10.1016/j.commatsci.2011.08.031

    Article  CAS  Google Scholar 

  21. S.A.S. Vanini, M. Abolghasemzadeh, and A. Assadi, Generalized Constitutive-Based Theoretical and Empirical Models for Hot Working Behavior of Functionally Graded Steels, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(7), p 3376–3384

    CAS  Google Scholar 

  22. L. Zhou, C. Cui, Q.Z. Wang, C. Li, B.L. Xiao, and Z.Y. Ma, Constitutive Equation and Model Validation for a 31 Vol.% B4Cp/6061Al Composite during Hot Compression, J. Mater. Sci. Technol., 2018, 34(10), p 1730–1738

    Google Scholar 

  23. R. Bobbili and V. Madhu, Constitutive Modeling of Hot Deformation Behavior of High-Strength Armor Steel, J. Mater. Eng. Perform., 2016, 25(5), p 1829–1838

    CAS  Google Scholar 

  24. Q. Zhao, L. Yu, Y. Liu, Y. Huang, Z. Ma, H. Li, and J. Wu, Microstructure and Tensile Properties of a 14Cr ODS Ferritic Steel, Mater. Sci. Eng. A, 2016, 2017(680), p 347–350. https://doi.org/10.1016/j.msea.2016.10.118

    Article  CAS  Google Scholar 

  25. R. Wang, M. Wang, Z. Li, and C. Lu, Physics-Based Constitutive Model for the Hot Deformation of 2Cr11Mo1VNbN Martensitic Stainless Steel, J. Mater. Eng. Perform., 2018, 27(9), p 4932–4940

    CAS  Google Scholar 

  26. L. Ou, Y. Nie, and Z. Zheng, Strain Compensation of the Constitutive Equation for High Temperature Flow Stress of a Al-Cu-Li Alloy, J. Mater. Eng. Perform., 2014, 23(1), p 25–30

    CAS  Google Scholar 

  27. M.R. Rokni, A. Zarei-Hanzaki, C.A. Widener, and P. Changizian, The Strain-Compensated Constitutive Equation for High Temperature Flow Behavior of an Al-Zn-Mg-Cu Alloy, J. Mater. Eng. Perform., 2014, 23(11), p 4002–4009

    CAS  Google Scholar 

  28. E.I. Poliak and J.J. Jonas, A One-Parameter Approach to Determining the Critical Conditions for the Initiation of Dynamic Recrystallization, Acta Mater., 1996, 44(1), p 127–136

    CAS  Google Scholar 

  29. H. Mirzadeh and A. Najafizadeh, Prediction of the Critical Conditions for Initiation of Dynamic Recrystallization, Mater. Des., 2010, 31(3), p 1174–1179. https://doi.org/10.1016/j.matdes.2009.09.038

    Article  CAS  Google Scholar 

  30. A. Najafizadeh and J.J. Jonas, Predicting the Critical Stress for Initiation of Dynamic Recrystallization, ISIJ Int., 2006, 46(11), p 1679–1684. https://doi.org/10.2355/isijinternational.46.1679

    Article  CAS  Google Scholar 

  31. S. Saadatkia, H. Mirzadeh, and J.M. Cabrera, Hot Deformation Behavior, Dynamic Recrystallization, and Physically-Based Constitutive Modeling of Plain Carbon Steels, Mater. Sci. Eng. A, 2015, 636, p 196–202. https://doi.org/10.1016/j.msea.2015.03.104

    Article  CAS  Google Scholar 

  32. Y. Wang, W.Z. Shao, L. Zhen, and B.Y. Zhang, Hot Deformation Behavior of Delta-Processed Superalloy 718, Mater. Sci. Eng. A, 2011, 528(7–8), p 3218–3227. https://doi.org/10.1016/j.msea.2011.01.013

    Article  CAS  Google Scholar 

  33. P. Páramo-Kañetas, U. Özturk, J. Calvo, J.M. Cabrera, and M. Guerrero-Mata, High-Temperature Deformation of Delta-Processed Inconel 718, J. Mater. Process. Technol., 2017, 2018(255), p 204–211. https://doi.org/10.1016/j.jmatprotec.2017.12.014

    Article  CAS  Google Scholar 

  34. Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-Parameter Models, Acta Metall., 1984, 32(1), p 57–70

    Google Scholar 

  35. Y. Bergström, A Dislocation Model for the Stress–Strain Behaviour of Polycrystalline α-Fe with Special Emphasis on the Variation of the Densities of Mobile and Immobile Dislocations, Mater. Sci. Eng., 1970, 5(4), p 193–200

    Google Scholar 

  36. R. Gujrati, C. Gupta, J.S. Jha, S. Mishra, and A. Alankar, Understanding Activation Energy of Dynamic Recrystallization in Inconel 712, Mater. Sci. Eng. A, 2018, 744, p 638–651. https://doi.org/10.1016/j.msea.2018.12.008

    Article  CAS  Google Scholar 

  37. C. Gupta, J.S. Jha, B. Jayabalan, R. Gujrati, A. Alankar, and S. Mishra, Correlating Hot Deformation Parameters with Microstructure Evolution during Thermomechanical Processing of Inconel 718 Alloy, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2019, 50(10), p 4714–4731. https://doi.org/10.1007/s11661-019-05380-0

    Article  CAS  Google Scholar 

  38. S.S. Satheesh Kumar, T. Raghu, P.P. Bhattacharjee, G. Appa Rao, and U. Borah, Constitutive Modeling for Predicting Peak Stress Characteristics during Hot Deformation of Hot Isostatically Processed Nickel-Base Superalloy, J. Mater. Sci., 2015, 50(19), p 6444–6456

    CAS  Google Scholar 

  39. N. Haghdadi, A. Zarei-Hanzaki, A.R. Khalesian, and H.R. Abedi, Artificial Neural Network Modeling to Predict the Hot Deformation Behavior of an A356 Aluminum Alloy, Mater. Des., 2013, 49, p 386–391. https://doi.org/10.1016/j.matdes.2012.12.082

    Article  CAS  Google Scholar 

  40. J. Zhao, H. Ding, W. Zhao, M. Huang, D. Wei, and Z. Jiang, Modelling of the Hot Deformation Behaviour of a Titanium Alloy Using Constitutive Equations and Artificial Neural Network, Comput. Mater. Sci., 2014, 92, p 47–56. https://doi.org/10.1016/j.commatsci.2014.05.040

    Article  CAS  Google Scholar 

  41. S. Mandal, P.V. Sivaprasad, S. Venugopal, and K.P.N. Murthy, Artificial Neural Network Modeling to Evaluate and Predict the Deformation Behavior of Stainless Steel Type AISI, 304L during Hot Torsion, Appl. Soft Comput. J., 2009, 9(1), p 237–244

    Google Scholar 

  42. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Constitutive Relationships for Hot Deformation of Austenite, Acta Mater., 2011, 59(16), p 6441–6448. https://doi.org/10.1016/j.actamat.2011.07.008

    Article  CAS  Google Scholar 

  43. N.K. Park, I.S. Kim, Y.S. Na, and J.T. Yeom, Hot Forging of a Nickel-Base Superalloy, J. Mater. Process. Technol., 2001, 111(1–3), p 98–102

    CAS  Google Scholar 

  44. Y. Wang, W.Z. Shao, L. Zhen, and X.M. Zhang, Microstructure Evolution during Dynamic Recrystallization of Hot Deformed Superalloy 718, Mater. Sci. Eng. A, 2008, 486(1–2), p 321–332

    Google Scholar 

  45. N. Nayan, S.V.S.N. Murty, S. Chhangani, A. Prakash, M. Prasad, and I. Samajdar, Effect of Temperature and Strain Rate on Hot Deformation Behavior and Microstructure of Al-Cu-Li Alloy, J. Alloys Compd., 2017, 723, p 548–558

    CAS  Google Scholar 

  46. C. Zener and J.H. Hollomon, Effect of Strain Rate Upon Plastic Flow of Steel, J. Appl. Phys., 1944, 15(1), p 22–32

    Google Scholar 

  47. H.J. Mcqueen and N.D. Ryan, Constitutive Analysis in Hot Working, Mater. Sci. Eng. A, 2002, 322, p 43–63

    Google Scholar 

  48. C.M. Sellars and W.J.M. Tegart, Relationship Between Strength and Structure in Deformation at Elevated Temperatures, Mem. Sci. Rev. Met., 63(9) (1966).

  49. C.M. Sellars and W.J. McTegart, On the Mechanism of Hot Deformation, Acta Metall., 1966, 14(9), p 1136–1138

    CAS  Google Scholar 

  50. F. Garofalo, An Empirical Relation Defining the Stress Dependence of Minimum Creep Rate in Metals, Trans. AIME, 1963, 227, p 351–356

    Google Scholar 

  51. H. Yuan and W.C. Liu, Effect of the δ Phase on the Hot Deformation Behavior of Inconel 718, Mater. Sci. Eng. A, 2005, 408(1–2), p 281–289

    Google Scholar 

  52. W.J. Weis, Superalloy 718-Metallurgy and Applications, vol. 257 (Warrendale, 1989), p 135.

  53. C.I. Garcia, D.E. Camus, E.A. Loria, and A.J. DeArdo, Superalloys 718, 625, 706 and Various Derivatives (Warrendale, 1991), p 925.

  54. H.J. Frost and M.F. Ashby, Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, London, 1982

    Google Scholar 

  55. H. Mirzadeh, M. Roostaei, M.H. Parsa, and R. Mahmudi, Rate Controlling Mechanisms during Hot Deformation of Mg-3Gd-1Zn Magnesium Alloy: Dislocation Glide and Climb, Dynamic Recrystallization, and Mechanical Twinning, Mater. Des., 2015, 68, p 228–231

    CAS  Google Scholar 

  56. Z. Bi, M. Zhang, J. Dong, K. Luo, and J. Wang, A New Prediction Model of Steady State Stress Based on the Influence of the Chemical Composition for Nickel-Base Superalloys, Mater. Sci. Eng. A, 2010, 527(16–17), p 4373–4382

    Google Scholar 

  57. J.M. Cabrera, Modelling and Simulations in Hot Deformation of Steels, Adv. Technol. Mater. Mater. Process. J., 2002, 4(1), p 45–57

    CAS  Google Scholar 

  58. J.M. Cabrera, A. AlOmar, J.J. Jonas, and J.M. Prado, Modeling the Flow Behavior of a Medium Carbon Microalloyed Steel under Hot Working Conditions, Metall. Mater. Trans. A, 1997, 28(11), p 2233–2243

    Google Scholar 

  59. H. Mirzadeh, Constitutive Description of 7075 Aluminum Alloy During Hot Deformation by Apparent and Physically-Based Approaches, J. Mater. Eng. Perform., 2015, 24(3), p 1095–1099

    CAS  Google Scholar 

  60. G.E. Dieter and D.J. Bacon, Mechanical Metallurgy, Mc’Graw-Hill, New York, 1986

    Google Scholar 

  61. M.P. Phaniraj and A.K. Lahiri, The Applicability of Neural Network Model to Predict Flow Stress for Carbon Steels, J. Mater. Process. Technol., 2003, 141(2), p 219–227

    CAS  Google Scholar 

  62. S. Srinivasulu and A. Jain, A Comparative Analysis of Training Methods for Artificial Neural Network Rainfall-Runoff Models, Appl. Soft Comput. J., 2006, 6(3), p 295–306

    Google Scholar 

  63. K.P. Rao and E.B. Hawbolt, Development of Constitutive Relationships Using Compression Testing of a Medium Carbon Steel, J. Eng. Mater. Technol. Trans. ASME, 1992, 114(1), p 116–123

    CAS  Google Scholar 

  64. H. Mirzadeh, A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress, Metall. Mater. Trans. A, 2015, 46(9), p 4027–4037. https://doi.org/10.1007/s11661-015-3006-1

    Article  CAS  Google Scholar 

  65. K. Genel, S.C. Kurnaz, and M. Durman, Modeling of Tribological Properties of Alumina Fiber Reinforced Zinc-Aluminum Composites Using Artificial Neural Network, Mater. Sci. Eng. A, 2003, 363(1–2), p 203–210

    Google Scholar 

  66. A. Mirzaei, A. Zarei-Hanzaki, M.H. Pishbin, A. Imandoust, and S. Khoddam, Evaluating the Hot Deformation Behavior of a Super-Austenitic Steel through Microstructural and Neural Network Analysis, J. Mater. Eng. Perform., 2015, 24(6), p 2412–2421

    CAS  Google Scholar 

  67. J. Liu, H. Chang, T.Y.H. Xu, and X. Ruan, Prediction of the Flow Stress of High-Speed Steel during Hot Deformation Using a BP Artificial Neural Network, J. Mater. Process. Technol., 2000, 103, p 200–205

    Google Scholar 

  68. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh, Modeling and Prediction of Hot Deformation Flow Curves, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2012, 43(1), p 108–123

    CAS  Google Scholar 

  69. D. Kundalkar, R. Singh, and A. Tewari, Effect of Friction Models and Parameters on the Lagrangian Flow Fields in High-Temperature Compression Testing, J. Mater. Eng. Perform., 2017, 26(10), p 4867–4875

    CAS  Google Scholar 

  70. High Tmperature Inconel 718, 2014. http://www.hightempmetals.com/techdata/hitempInconel718data.php. Accessed 14 March 2014.

  71. Inconel Alloy 718, 2014. http://www.specialmetals.com/documents/Inconelalloy718.pdf. Accessed 14 March 2014.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Jarugula.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarugula, R., Aravind, U., Meena, B. et al. High Temperature Deformation Behavior and Constitutive Modeling for Flow Behavior of Alloy 718. J. of Materi Eng and Perform 29, 4692–4707 (2020). https://doi.org/10.1007/s11665-020-04989-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-020-04989-2

Keywords

Navigation