Skip to main content
Log in

Effect of Initial Grain Size on the Evolution of {001}〈100〉 Texture in Severely Deformed and Annealed High-Purity Nickel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Development of cube texture ({100}〈001〉) was studied in high-purity Ni (99.97 pct) with widely different starting grain sizes (~28 and 650 μm) following ultrahigh straining (ε eq  = 6.4) by accumulative roll bonding (ARB) and annealing. The fine-grained starting material (FGSM) develops a much stronger cube texture after different annealing treatments as compared to the coarse-grained starting material (CGSM), despite their very similar bulk deformation texture. A lamellar type deformation structure is observed in both these materials, but the CGSM shows a more fragmented structure and frequent presence of shear bands. The recrystallization texture of the two materials differs right from the onset of recrystallization: cube-oriented grains nucleate and grow in the FGSM in sharp contrast to the nucleation and growth of randomly oriented grains in lamellar as well as shear-banded regions of the CGSM. The observed differences in the evolution of recrystallization texture in the two materials are discussed with regard to the microstructural differences and pertinent theories on the formation of cube texture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. TSL-OIM is a trademark of EDAX Inc., Mahwah, NJ.

References

  1. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D.J. Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A-Struct., 1997, vol. 238, pp. 219–74.

    Article  Google Scholar 

  2. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed., Elsevier, Oxford, UK, 2004, pp. 379–413.

  3. A. Goyal, M.P. Paranthaman, and U. Schoop: MRS Bull., 2004, vol. 29, pp. 552–61.

    Article  CAS  Google Scholar 

  4. I.L. Dillamore and H. Katoh: Met. Sci. Metal. Sci., 1974, vol. 8, pp. 73–83.

    CAS  Google Scholar 

  5. I. Samajdar and R.D. Doherty: Acta Mater., 1998, vol. 46, pp. 3145–58.

    Article  CAS  Google Scholar 

  6. W.Q. Cao, A. Godfrey, N. Hansen, and Q. Liu: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 204–14.

    Article  CAS  Google Scholar 

  7. A. Vorhauer, S. Scheriau, and R. Pippan: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 908–18.

    Article  CAS  Google Scholar 

  8. N. Tsuji, Y. Saito, S.-H. Lee, and Y. Minamino: Adv. Eng. Mater., 2003, vol. 5, pp. 338–44.

    Article  CAS  Google Scholar 

  9. N. Hansen and D.J. Jensen: Phil. Trans. R. Soc. A, 1999, vol. 357, pp. 1447–69.

    Article  CAS  Google Scholar 

  10. A.A. Ridha and W.B. Hutchinson: Acta Metall., 1982. vol. 30, p. 1929–39.

    Article  CAS  Google Scholar 

  11. X.L. Li, W. Liu, A. Godfrey, D. Juul Jensen, and Q. Liu: Acta Mater., 2007, vol. 55, pp. 3531–40.

    Article  CAS  Google Scholar 

  12. H. Makita, S. Hanada, and O. Izumi: Acta Metall., 1988, vol. 36, pp. 403–12.

    Article  CAS  Google Scholar 

  13. M. Sindel, G.D. Kohlhoff, K. Lucke, and B.J. Duggan: Text. Microstruct., 1990, vol. 12, pp. 37–46.

    Article  Google Scholar 

  14. D.A. Hughes and N. Hansen: Philos. Mag., 2003, vol. 83, pp. 3871–93.

    Article  CAS  Google Scholar 

  15. J. Hjelen, R. Orsund, and E. Nes: Acta Metall. Mater., 1991, vol. 39, pp. 1377–1404.

    Article  CAS  Google Scholar 

  16. T. Kamijo, H. Adachihara, and H. Fukutomi: Acta Metall. Mater., 1993, vol. 41, pp. 975–85.

    Article  CAS  Google Scholar 

  17. S. Zaefferer, T. Baudin, and R. Penelle: Acta Mater., 2001, vol. 49, pp. 1105–22.

    Article  CAS  Google Scholar 

  18. P.P. Bhattacharjee, R.K. Ray, and N. Tsuji: Acta Mater., 2009, vol. 57, pp. 2166–79.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

One of the authors (PPB) gratefully acknowledges the support of the Japan Society for the Promotion of Science for awarding a postdoctoral fellowship under the auspices of which part of this research work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. P. Bhattacharjee.

Additional information

Manuscript submitted December 16, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharjee, P.P., Tsuji, N. & Ray, R.K. Effect of Initial Grain Size on the Evolution of {001}〈100〉 Texture in Severely Deformed and Annealed High-Purity Nickel. Metall Mater Trans A 42, 2769–2780 (2011). https://doi.org/10.1007/s11661-011-0674-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0674-3

Keywords

Navigation