Skip to main content
Log in

Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at % W

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this work the formation of strong recrystallization cube texture in heavily rolled Ni–9.3 at % W has been studied. During the cold rolling (also known as recovery-rolling) process the deformation texture of Ni–9.3 at % W alloy (further notated as Ni9W) transforms to Copper-type rolling texture, and after annealing, a sharp cube texture is generated. It is remarkably strong recrystallization cube texture, as high as 93 vol %, in metallic materials with low stacking fault energy. The formation mechanism of the cube texture is adopted for the rapid recovery of cube nuclei at the early stage of recrystallization as well as fast migration rate of high angle boundaries between cube grains and deformed microstructure at high temperature. Considering the cold rolling texture of Ni9W, oriented nucleation seems to play more important role in the cube texture formation process. In this article, the relationship between the deformation texture and recrystallization cube texture is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Goyal, R. Feenstra, M. Paranthaman, J. R. Thompson, B. Y. Kang, C. Cantoni, D. F. Lee, F. A. List, P. M. Martin, and E. Lara-Curzio, “Strengthened, biaxially textured Ni substrate with small alloying additions for coated conductor applications,” Phys. C 382, 251–262 (2002).

    Article  CAS  Google Scholar 

  2. L. Ma, H. L. Suo, Y. Zhao, A. C. Wulff, Y. R. Liang, and J. C. Grivel, “Study on Fabrication of Ni–5 at % W Tapes for Coated Conductors from Cylinder Ingots,” IEEE Trans. Appl. Supercond. 25, 1–5 (2015).

    Google Scholar 

  3. A. A. Nikonov, “A study of the magnetoelastic effect of metal textured Ni–5 at % W tapes,” Phys. Met. Metallogr. 119, 6–17 (2018).

    Article  CAS  Google Scholar 

  4. Y. Zhao, H. L. Suo, Y. H. Zhu, J. C. Grivel, M. Gao, L. Ma, R. F. Fan, M. Liu, Y. Ji, and M. L. Zhou, “Study on the formation of cubic texture in Ni–7 at % W alloy substrates by powder metallurgy routes,” Acta Mater. 57, 773–781 (2009).

    Article  CAS  Google Scholar 

  5. J. Eickemeyer, R. Hühne, A. Güth, C. Rodig, U. Gaitzsch, J. Freudenberger, L. Schultz, and B. Holzapfel, “Textured Ni–9.0 at % W substrate tapes for YBCO-coated conductors,” Supercond. Sci. Technol. 23, 085012 (2010).

    Article  Google Scholar 

  6. J. N. Liu, W. Liu, G. Y. Tang, and R. F. Zhu, “Fabrication of textured Ni–9.3 at % W substrate by electropulsing intermediate annealing method,” Phys. C 497, 119–122 (2014).

    Article  CAS  Google Scholar 

  7. M. Gao, H. L. Suo, Y. Zhao, J. C. Grivel, Y. L. Cheng, L. Ma, R. Wang, P. K. Gao, J. H. Wang, and M. Liu, “Characterization and properties of an advanced composite substrate for YBCO-coated conductors,” Acta Mater. 58, 1299–1308 (2010).

    Article  CAS  Google Scholar 

  8. U. Gaitzsch, J. Eickemeyer, C. Rodig, J. Freudenberger, B. Holzapfel, and L. Schultz, “Paramagnetic substrates for thin film superconductors: Ni–W and Ni–W–Cr,” Scr. Mater. 62, 512–515 (2010).

    Article  CAS  Google Scholar 

  9. R. D. Doherty, “Recrystallization and texture,” Prog. Mater Sci. 42, 39–58 (1997).

    Article  CAS  Google Scholar 

  10. V. S. Sarma, J. Eickemeyer, C. Mickel, L. Schultz, and B. Holzapfel, “On the cold rolling textures in some fcc Ni–W alloys,” Mater. Sci. Eng., A 380, 30–33 (2004).

    Article  Google Scholar 

  11. R. D. Doherty, D. A. Hughes, F. J. Humphreys, J. J. Jonas, D. J. Jensen, M. E. Kassner, and W. E. King, “Current issues in recrystallization: a review,” Mater. Sci. Eng., A 238, 219–274 (1997).

    Article  Google Scholar 

  12. U. Schmidt and K. Lücke, “Recrystallization Textures of silver, copper and α-brasses with different zinc-contents as a function of the rolling temperature,” Texture Cryst. Solids. 3, 85 (1979).

    Article  CAS  Google Scholar 

  13. V. S. Sarma, J. Eickemeyer, L. Schultz, and B. Holzapfel, “Recrystallization texture and magnetization behavior of some FCC Ni–W alloys,” Scr. Mater. 50, 953–957 (2004).

    Article  CAS  Google Scholar 

  14. R. Hielscher and H. Schaeben, “A novel pole figure inversion method: specification of the MTEX algorithm,” J. Appl. Crystallogr. 41, 1024–1037 (2010).

    Article  Google Scholar 

  15. T. Leffers and R. K. Ray, “The brass-type texture and its deviation from the copper-type texture,” Prog. Mater Sci. 54, 351–396 (2009).

    Article  CAS  Google Scholar 

  16. D. P. Field, L. T. Bradford, M. M. Nowell, and T. M. Lillo, “The role of annealing twins during recrystallization of Cu,” Acta Mater. 55, 4233–4241 (2007).

    Article  CAS  Google Scholar 

  17. H. Paul, J. H. Driver, C. Maurice, and A. Piątkowski, “Recrystallization mechanisms of low stacking fault energy metals as characterized on model silver single crystals,” Acta Mater. 55, 833–847 (2007).

    Article  CAS  Google Scholar 

  18. H. Tian, Y. Wang, L. Ma, M. Liu, and H. L. Suo, “Evolutions of the texture and microstructure of a heavily cold-rolled Ni9W alloy during recrystallization,” J. Mater. Res. 31, 2438–2444 (2016).

    Article  CAS  Google Scholar 

  19. P. P. Bhattacharjee, R. K. Ray, and N. Tsuji, “Cold rolling and recrystallization textures of a Ni–5 at % W alloy,” Acta Mater. 57, 2166–2179 (2009).

    Article  CAS  Google Scholar 

  20. A. A. Ridha and W. B. Hutchinson, “Recrystallization mechanisms and the origin of cube texture in copper,” Acta Metall. 30, 1929–1939 (1982).

    Article  CAS  Google Scholar 

  21. D. P. Rodionov, I. V. Gervas’eva, Yu. V. Khlebnikova, V. A. Kazantsev, N. I. Vinogradova, and V. A. Sazonova, “Effect of recrystallization annealing on the formation of a perfect cube texture in fcc nickel Alloys,” Phys. Met. Metallogr. 111, 601–611 (2011).

    Article  Google Scholar 

  22. R. K. Ray, W. B. Hutchinson, and B. J. Duggan, “A study of the nucleation of recrystallization using HVEM,” Acta Metall. 23, 831–840 (1975).

    Article  CAS  Google Scholar 

  23. H. J. Bunge and U. Köhler, “Modeling primary recrystallization in fcc and bcc metals by oriented nucleation and growth with the statistical compromise model,” Textures Microstruct. 28, 3–4 (1997).

    Google Scholar 

  24. G. Gottstein, “Grain boundary migration in metals,” in Thermodynamics, Kinetics, Applications, Second Edition (CRC, 2009).

  25. J. Hjelen, R. Ørsund, and E. Nes, “On the origin of recrystallization textures in aluminum,” Acta Metall. Mater. 39, 1377–1404 (1991).

    Article  CAS  Google Scholar 

  26. I. Samajdar and R. D. Doherty, “Role of S[(123)〈634〉] orientations in the preferred nucleation of cube grains in recrystallization of FCC metals,” Scr. Metall. Mater. 32, 845–850 (1995).

    Article  CAS  Google Scholar 

  27. B. J. Duggan, K. Lücke, G. Köhlhoff, and C. S. Lee, “On the origin of cube texture in copper,” Acta Metall. Mater. 41, 1921–1927 (1993).

    Article  CAS  Google Scholar 

  28. K. G. Janssens, D. Olmsted, E. A. Holm, S. M. Foiles, S. J. Plimpton, and P. M. Derlet, “Computing the mobility of grain boundaries,” Nat. Mater. 5, 124–127 (2006).

    Article  CAS  Google Scholar 

  29. A. L. Etter, M. H. Mathon, T. Baudin, V. Branger, and R. Penelle, “Influence of the cold rolled reduction on the stored energy and the recrystallization texture in a Fe–53% Ni alloy,” Scr. Mater. 46, 311–317 (2002).

    Article  CAS  Google Scholar 

  30. S. Zaefferer, T. Baudin, and R. Penelle, “A study on the formation mechanisms of the cube recrystallization texture in cold rolled Fe–36% Ni alloys,” Acta Mater. 49, 1105–1122 (2001).

    Article  CAS  Google Scholar 

  31. F. J. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena (Amsterdam, Elsevier, 1995), pp. 489–497.

    Google Scholar 

  32. Y. B. Zhang, A. Godfrey, Q. Liu, and W. Liu, “Analysis of the growth of individual grains during recrystallization in pure nickel,” Acta Mater. 57, 2631–2639 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is financially supported by the National Natural Science Foundation of China (51571002, 51501096), by Beijing Natural Science Foundation (2172008), by General Program of Science and Technology Development Project of Beijing Municipal Education Commission of China (no. KM201810005010), by the Doctoral Program of Higher Education of Special Research Fund (20121103110012), by Beijing Municipal Natural Science Foundation B Type (KZ201310005003), and by Program of Beijing City and Beijing University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ji, Y.T., Suo, H.L., Ma, L. et al. Formation of Recrystallization Cube Texture in Highly Rolled Ni–9.3 at % W. Phys. Metals Metallogr. 121, 248–253 (2020). https://doi.org/10.1134/S0031918X20020180

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X20020180

Keywords:

Navigation