Skip to main content
Log in

High-Temperature Mechanical Behavior of End-of-Life Cryomilled NiCrAlY Bond Coat Materials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Previous work has demonstrated that the lifetime of atmospheric plasma sprayed thermal barrier coating (TBC) systems incorporating cryomilled NiCrAlY bond coats show superior reliability with up to 3 times longer lifetimes compared to conventional ones. These conventional and cryomilled NiCrAlY bond coats at end-of-life (after thermal cycle failure) were studied in detail in the present work with a focus on the mechanical behavior in the temperature range from room temperature to 1273 K (1000 °C). The investigations were carried out using microtensile samples and the DIC technique. It turns out that the low-temperature strength of the cryomilled NiCrAlY bond coat is inferior to that of conventional ones, which might be due to a more pronounced porosity. At higher temperatures (between 1173 K and 1273 K (900 °C and 1000 °C)), the cryomilled bond coat shows almost twice the strength of the conventional bond coat, despite having been exposed to almost 3 times as many thermal cycles. The thermal stability of the nitride dispersoids appears to compensate for the gamma prime dissolution that typically occurs at these elevated temperatures, allowing for strength retention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. HASTELLOY is a trademark of Haynes International Inc., Kokomo, IN.

  2. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. N.P. Padture, M. Gell, and E.H. Jordan: Science, 2002, vol. 296 (5566), pp. 280–84.

    Article  CAS  Google Scholar 

  2. A. Feuerstein, J. Knapp, T. Taylor, A. Ashary, A. Bolcavage, and N. Hitchman: J. Thermal Spray Technol., 2008, vol. 17 (2), pp. 199–213.

    Article  CAS  Google Scholar 

  3. A.G. Evans, J.W. Hutchinson, and M.Y. He: Acta Mater., 1999, vol. 47 (5), pp. 1513–22.

    Article  CAS  Google Scholar 

  4. A.G. Evans, D.R. Mumm, J.W. Hutchinson, G.H. Meier, and F.S. Pettit: Prog. Mater Sci., 2001, vol. 46 (5), pp. 505–53.

    Article  Google Scholar 

  5. S.R. Choi, J.W. Hutchinson, and A.G. Evans: Mech. Mater., 1999, vol. 31 (7), pp. 431–47.

    Article  Google Scholar 

  6. J.S. Van Sluytman, A. Suzuki, A. Bolcavage, R.C. Helmink, D.L. Ballard, and T.M. Pollock: Gamma Prime Morphology and Creep Properties of Nickel Based Superalloys with Platinum Group Metal Additions. TMS, 2008, pp. 1–11.

  7. D. Pan, M.W. Chen, P.K. Wright, and K.J. Hemker: Acta Mater., 2003, vol. 51 (8), pp. 2205–17.

    Article  CAS  Google Scholar 

  8. K. Ma, F. Tang, and J.M. Schoenung: Acta Mater., 2010, vol. 58 (5), pp. 1518–29.

    Article  CAS  Google Scholar 

  9. B.G. Mendis and K.J. Hemker: Scripta Mater., 2008, vol. 58 (4), pp. 255–58.

    Article  CAS  Google Scholar 

  10. D.R.G. Achar, R. Munoz-Arroyo, L. Singheiser, and W.J. Quadakkers: Surf. Coat. Technol., 2004, vol. 187 (2–3), pp. 272–83.

    Article  CAS  Google Scholar 

  11. T.A. Taylor and D.F. Bettridge: Surf. Coat. Technol., 1996, vol. 86–87 (Part 1), pp. 9–14.

    Article  Google Scholar 

  12. J.A. Picas, A. Forn, L. Ajdelsztajn, and J. Schoenung: Powder Technol., 2004, vol. 148 (1), pp. 20–23.

    Article  CAS  Google Scholar 

  13. F. Tang, L. Ajdelsztajn, G.E. Kim, V. Provenzano, and J.M. Schoenung: Mater. Sci. Eng. A, 2006, vol. 425 (1–2), pp. 94–106.

  14. L. Ajdelsztajn, D. Hulbert, A. Mukherjee, and J.M. Schoenung: Surf. Coat. Technol., 2007, vol. 201 (24), pp. 9462–67.

    Article  CAS  Google Scholar 

  15. M. Zupan, M. Hayden, C. Boehlert, and K. Hemker: Exper. Mech., 2001, vol. 41 (3), pp. 242–47.

    Article  CAS  Google Scholar 

  16. C. Eberl, D.S. Gianola, and K.J. Hemker: Exper. Mech., 2010, vol. 50, pp. 85–97.

    Article  CAS  Google Scholar 

  17. W.N. Sharpe, Jr., J. Bagdahn, K. Jackson, and G. Coles: J. Mater. Sci., 2003, vol. 38, pp. 4075–79.

    Article  CAS  Google Scholar 

  18. http://www.mathworks.com/matlabcentral/fileexchange/12413, January 2007.

  19. D.B. Witkin and E.J. Lavernia: Prog. Mater. Sci., 2006, vol. 51 (1), pp. 1–60.

    Article  CAS  Google Scholar 

  20. Y. Li, W. Liu, V. Ortalan, W.F. Li, Z. Zhang, R. Vogt, N.D. Browning, E.J. Lavernia, and J.M. Schoenung: Acta Mater., 2010, vol. 58 (5), pp. 1732–40.

    Article  CAS  Google Scholar 

  21. K.J. Hemker, B.G. Mendis, and C. Eberl: Mater. Sci. Eng. A, 2008, vol. 483–484, pp. 727–30.

    Google Scholar 

Download references

Acknowledgments

Financial support was provided by United States Office of Naval Research Grant No. N00014-06-1-0506 and partially by German Science Foundation Grant No. SFB499 N01. The authors also thank Professor Sharp for the opportunity to conduct the high-temperature tension tests in his laboratory and Dr.-Ing. Elmar Schweitzer and Dr. Torsten Scherer for their help with the EDX measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Funk.

Additional information

Manuscript submitted April 6, 2010.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funk, M., Ma, K., Eberl, C. et al. High-Temperature Mechanical Behavior of End-of-Life Cryomilled NiCrAlY Bond Coat Materials. Metall Mater Trans A 42, 2233–2241 (2011). https://doi.org/10.1007/s11661-011-0659-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0659-2

Keywords

Navigation