Skip to main content
Log in

Role of Plastic Deformation on Elevated Temperature Tribological Behavior of an Al-Mg Alloy (AA5083): A Friction Mapping Approach

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Friction maps have been developed to explain the behavior of aluminum alloys under dynamic tribological conditions generated by the simultaneous effects of temperature and strain rate. A specially designed tribometer was used to measure the coefficient of friction (COF) of AA5083 strips subjected to sliding with a simultaneous application of tensile strain in the temperature range of 693 K to 818 K (420 °C to 545 °C) and strain rates between 5 × 10−3 s−1 and 4 × 10−2 s−1. The mechanisms of plastic deformation, namely, diffusional flow, grain boundary sliding (GBS), and solute drag (SD), and their operation ranges were identified. Relationships between the bulk deformation mechanism and COF were represented in a unified map by superimposing the regions of dominant deformation mechanisms on the COF map. The change in COF (from 1.0 at 693 K (420 °C) and 1 × 10−2 s−1 to 2.1 at 818 K (545 °C) and 4 × 10−2 s−1) was found to be largest in the temperature–strain rate region, where GBS was the dominant deformation mechanism, as a result of increased surface roughness. The role of bulk deformation mechanisms on the evolution of the surface oxide layer damage was also examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. JEOL is a trademark of Japan Electron Optics Ltd., Tokyo.

References

  1. R. Verma, A.K. Ghosh, S. Kim, and C. Kim: Mater. Sci. Eng., 1995, vol. 191A, pp. 143–50.

    Google Scholar 

  2. R. Verma, P.A. Friedman, A.K. Ghosh, S. Kim, and C. Kim: Metall. Mater. Trans. A, 1996, vol. 27A, pp. 1889–98.

    Article  CAS  Google Scholar 

  3. R.M. Cleveland, A.K. Ghosh, and J.R. Bradley: Mater. Sci. Eng. A, 2003, vol. 351A, pp. 228–36.

    Google Scholar 

  4. O.D. Sherby and J. Wadsworth: Prog. Mater. Sci., 1989, vol. 33, pp. 169–21.

    Article  CAS  Google Scholar 

  5. J.G. Schroth: in Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, eds., TMS, Warrendale, PA, 2004, pp. 9–20.

    Google Scholar 

  6. C. Kim, M.G. Konopnicki, and F.G. Lee: in Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, eds., TMS, Warrendale, PA, 2004, pp. 77–84.

    Google Scholar 

  7. A.T. Morales: in Advances in Superplasticity and Superplastic Forming, E.M. Taleff, P.A. Friedman, P.E. Krajewski, R.S. Mishra, and J.G. Schroth, eds., TMS, Warrendale, PA, 2004, pp. 51–64.

    Google Scholar 

  8. M.D. Hanna, P.E. Krajewski, and J.G. Schroth: Proc. STLE/ASME Int. Joint Tribology Conf., San Diego, CA, 2007, IJTC2007-44043, pp. 705–07.

  9. P. Krajewski: U.S. Patent 5,819,572, Oct. 13, 1998.

  10. B. Navinsek and P. Panjan: Surf. Coat. Technol., 1995, vols. 74–75, pp. 919–26.

    Article  Google Scholar 

  11. B. Navinsek, P. Panjan, and I. Milosev: Surf. Coat. Technol., 1997, vol. 97, pp. 182–91.

    Article  CAS  Google Scholar 

  12. J. Edwards: Coating and Surface Treatment Systems for Metals, ASM INTERNATIONAL, Materials Park, OH, 1996, pp. 72–183.

    Google Scholar 

  13. C. Herring: J. Appl. Phys., 1950, vol. 21, pp. 437–45.

    Article  Google Scholar 

  14. J. Harper and J.E. Dorn: Acta Metall., 1957, vol. 5, pp. 654–65.

    Article  CAS  Google Scholar 

  15. T.G. Langdon and P. Yavari: Acta Metall., 1982, vol. 30, pp. 881–87.

    Article  CAS  Google Scholar 

  16. J.N. Wang and T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2487–92.

    Article  CAS  Google Scholar 

  17. P. Yavari, D.A. Miller, and T.G. Langdon: Acta Metall., 1982, vol. 30, pp. 871–79.

    Article  CAS  Google Scholar 

  18. F.A. Mohamed: Mater. Sci. Eng., 1978, vol. 32A, pp. 37–40.

    Google Scholar 

  19. J. Weertman: J. Appl. Phys., 1957, vol. 28, pp. 362–64.

    Article  CAS  Google Scholar 

  20. R.Z. Valiev and O.A. Kaibyshev: Acta Metall., 1983, vol. 31, pp. 2121–28.

    Article  CAS  Google Scholar 

  21. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–43.

    Article  CAS  Google Scholar 

  22. T.G. Langdon: Mater. Sci. Eng., 1991, vol. 137A, pp. 1–11.

    Google Scholar 

  23. M.F. Ashby and R.A. Verrall: Acta Metall., 1973, vol. 21, pp. 149–63.

    Article  CAS  Google Scholar 

  24. R.C. Gifkins: Metall. Trans. A, 1976, vol. 7A, pp. 1225–32.

    CAS  Google Scholar 

  25. E.M. Taleff, G.A. Henshall, T.G. Nieh, D.R. Lesuer, and J. Wadsworth: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 1081–91.

    CAS  Google Scholar 

  26. M.A. Kulas, W.P. Green, E.M. Taleff, P.E. Krajewski, and T.R. McNelley: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1249–61.

    Article  CAS  Google Scholar 

  27. W.P. Green, M.A. Kulas, A. Niazi, K. Oishi, E.M. Taleff, P.A. Krajewski, and T.R. McNelley: Metall. Mater. Trans. A, 2006, vol. 37A, pp. 2727–38.

    Article  CAS  Google Scholar 

  28. T.R. McNelley, K. Oh-Ishi, A.P. Zhilyaev, S. Swaminathan, P.E. Krajewski, and E.M. Taleff: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 50–64.

    Article  CAS  Google Scholar 

  29. D.E. Cipoletti, A.F. Bower, Y. Qi, and P.E. Krajewski: Mater. Sci. Eng., 2009, vol. 504A, pp. 175–82.

    Google Scholar 

  30. M. Fishkis and J.C. Lin: Wear, 1997, vol. 206, pp. 156–70.

    Article  CAS  Google Scholar 

  31. G. Buytaert, H. Terryn, S. Van Gils, B. Kernig, B. Grzemba, and M. Mertens: Surf. Interface Anal., 2005, vol. 37, pp. 534–43.

    Article  CAS  Google Scholar 

  32. D.J. Field, G.M. Scamans, and E.P. Butler: Metall. Trans. A, 1987, vol. 18A, pp. 463–72.

    CAS  Google Scholar 

  33. C. Lea and J. Ball: Appl. Surf. Sci., 1984, vol. 17, pp. 344–62.

    Article  CAS  Google Scholar 

  34. M.H. Zayan, O.M. Jamjoom, and N.A. Razik: Oxid. Met., 1990, vol. 34, pp. 323–33.

    Article  CAS  Google Scholar 

  35. M.F. Frolish, J.C. Walker, C. Jiao, W.M. Rainforth, and J.H. Beynon: Tribol. Int., 2005, vol. 38, pp. 1050–58.

    Article  CAS  Google Scholar 

  36. P. Hancock and J.R. Nicholls: Mater. Sci. Technol., 1988, vol. 4, pp. 398–06.

    CAS  Google Scholar 

  37. M. Schutze: Protective Oxide Scales and Their Breakdown, 1st ed., John Wiley & Sons Ltd., Chichester, 1997, pp. 67–114.

    Google Scholar 

  38. H.E. Evans: Mater. Sci. Technol., 1988, vol. 4, pp. 415–20.

    CAS  Google Scholar 

  39. H.R. Le, M.P.F. Sutcliffe, P.Z. Wang, and G.T. Burstein: Acta Mater., 2004, vol. 52, pp. 911–20.

    Article  CAS  Google Scholar 

  40. M.G. Zelin: Acta Mater., 1997, vol. 45, pp. 3533–42.

    Article  CAS  Google Scholar 

  41. V.P. Pojda, V.V. Bryukhovets’ky, A.V. Pojda, R.I. Kuznetsova, V.F. Klepikov, and D.L. Voronov: Phys. Met. Metall., 2007, vol. 103, pp. 414–23.

    Article  Google Scholar 

  42. Y. Takayama, T. Tozawa, and H. Kato: Acta Mater., 1999, vol. 47, pp. 1263–70.

    Article  CAS  Google Scholar 

  43. W.D. Cao, X.P. Lu, and H. Conrad: Acta Mater., 1996, vol. 44, pp. 697–706.

    Article  CAS  Google Scholar 

  44. J.K. Chang, E.M. Taleff, P.E. Krajewski, and J.R. Ciulik: Scripta Mater., 2009, vol. 60, pp. 459–62.

    Article  CAS  Google Scholar 

  45. J. Koike, M. Mabuchi, and K. Higashi: Acta Metall. Mater., 1995, vol. 43, pp. 199–206.

    CAS  Google Scholar 

  46. W.J.D. Shaw: J. Mater. Sci., 1989, vol. 24, pp. 4114–19.

    Article  CAS  Google Scholar 

  47. S.F. Claeys, J.W. Jones, and J.E. Allison: in Dispersion Strengthened Aluminum Alloys, Y.W. Kim and W.M. Griffith, eds., TMS, Warrendale, PA, 1988, pp. 323–36.

    Google Scholar 

  48. R. Benzing, I. Goldblatt, V. Hopkins, W. Jamison, K. Mecklenburg, and M. Peterson: Friction and Wear Devices Catalog, 2nd ed., American Society of Lubrication Engineers, Park Ridge, Ill, 1976, pp. 1–458.

    Google Scholar 

  49. J.A. Schey: Tribology in Metalworking: Friction, Fabrication and Wear, ASM, Metals Park, OH, 1983.

    Google Scholar 

  50. S. Kalpakjian: Annals CIRP, 1985, vol. 34 (2), pp. 585–92.

    Article  Google Scholar 

  51. J.A. Schey and M.K. Smith: Proc. Sheet Metal and Stamping Symp., Society of Automotive Engineers, Detroit, MI, 1993, SP-944, pp. 261–67.

  52. P.E. Krajewski and A.T. Morales: J. Mater. Eng. Perform., 2004, vol. 13, pp. 700–09.

    Article  CAS  Google Scholar 

  53. X. Meng-Burany, T.A. Perry, A.K. Sachdev, and A.T. Alpas: Wear, 2011, vol. 270, pp. 152–62.

    Article  CAS  Google Scholar 

  54. A.R. Riahi, A. Edrisy, and A.T. Alpas: Surf. Coat. Technol., 2009, vol. 203, pp. 2030–35.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge Messrs. M.P. Balogh’s (GM) and R.A. Waldo’s (GM) assistance with the characterization work and Mr. A. Jenner’s (University of Windsor) contributions to the construction of the high-temperature tribometer. This work is supported by General Motors of Canada and the Natural Sciences and Engineering Council of Canada through an Industrial Research Chair Grant (ATA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. T. Alpas.

Additional information

Manuscript submitted August 7, 2010.

Appendix

Appendix

General creep equation:

$$ \dot{\varepsilon } = A\left( {{\frac{\sigma }{E}}} \right)^{n} \exp \left( { - \frac{Q}{RT}} \right) $$
(A1)

where A is the material constant, σ is the flow stress, n is the stress exponent, E is the temperature-compensated Young’s modulus, Q is the activation energy for deformation, and R is the universal gas constant.

Diffusional flow creep:

$$ \dot{\varepsilon } = k_{1} \left( {{\frac{{D_{L} }}{{d^{2} }}}} \right)\left( {{\frac{{Eb^{3} }}{kT}}} \right)\left( {{\frac{\sigma }{E}}} \right)\quad \left( {{\text{lattice}}\,{\text{diffusion}}} \right) $$
(A2)
$$ \dot{\varepsilon } = k_{2} \left( {{\frac{{D_{gb} }}{{d^{2} }}}} \right)\left( {{\frac{{Eb^{3} }}{kT}}} \right)\left( {{\frac{\sigma }{E}}} \right)\quad \left( {{\text{grain}}\,{\text{boundary}}\,{\text{diffusion}}} \right) $$
(A3)

SD creep:

$$ \dot{\varepsilon } = k_{3} \left( {{\frac{{D_{s} }}{{{{b}}^{2} }}}} \right)\left( {{\frac{\sigma }{E}}} \right)^{3} $$
(A4)

GBS:

$$ \dot{\varepsilon } = k_{4} \left( {{\frac{{D_{L} }}{{d^{2} }}}} \right)\left( {{\frac{\sigma }{E}}} \right)^{2} \quad \left( {{\text{lattice}}\,{\text{diffusion}}\,{\text{controlled}}} \right) $$
(A5)
$$ \dot{\varepsilon } = k_{5} \left( {{\frac{{D_{gb} {{b}}}}{{d^{3} }}}} \right)\left( {{\frac{\sigma }{E}}} \right)^{2} \quad \left( {{\text{boundary}}\,{\text{diffusion}}\,{\text{controlled}}} \right) $$
(A6)

For Eqs. [A2] through [A6], D L is the lattice diffusion coefficient, D gb is the GB diffusion coefficient and D s is the solute atom diffusion coefficient, b is the Burgers vector, d is the grain size, E is the temperature compensated Young’s modulus, k is the Boltzmann’s constant, and k 1 through k 5 are material constants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, S., Morales, A.T., Riahi, A.R. et al. Role of Plastic Deformation on Elevated Temperature Tribological Behavior of an Al-Mg Alloy (AA5083): A Friction Mapping Approach. Metall Mater Trans A 42, 2384–2401 (2011). https://doi.org/10.1007/s11661-011-0649-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-011-0649-4

Keywords

Navigation