Skip to main content
Log in

Roles of Friction-Induced Strain Hardening and Recrystallization in Dry Sliding Wear of AZ31 Magnesium Alloy

  • Technical Paper
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

Dry sliding wear tests were performed on AZ31 alloy using a pin-on-disc configuration under the loads of 5–360 N and sliding speeds of 0.1–1.5 m/s. Friction and wear characteristics of AZ31 alloy were investigated as a function of the load and sliding speed. Wear mechanisms for AZ31 alloy were characterized by scanning electron microscopy. The wear behavior in mild and severe wear regimes was described in terms of plastic deformation and microstructure evolution in subsurface, and surface hardness change and temperature rise of worn surfaces. The results revealed that surface strain hardening caused by large plastic deformation played an important role in maintaining a low slope of wear rate in mild wear regime, while surface thermal softening originating from dynamic recrystallization and surface melting were responsible for a rapid wear in severe wear regime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Mordike B L, and Ebert T, Mater Sci Eng A 302 (2001) 37.

    Article  Google Scholar 

  2. Avedesian M M, and Baker H, Magnesium and Magnesium Alloys-ASM Specialty Handbook, ASM International Materials Park (1999), p13.

  3. Barnett M R, Keshavarz Z, and Beer A G, Acta Materilia 52 (2004) 5093.

    Article  Google Scholar 

  4. Janik V, Yin D D, Wang Q D, He S M, Chen C J, Chen Z, and Boehlert C J, Mater Sci Eng A 528 (2011) 3105.

    Article  Google Scholar 

  5. Kawamura Y, Hayashi K, Inoue A, and Masumoto T, Mater Trans JIM 42 (2001) 1172.

    Article  Google Scholar 

  6. Inoue A, Matsusita M, Kawamura Y, Amiya K, Hayashi K, and Koike J, Mater Trans JIM 43 (2002) 580.

    Article  Google Scholar 

  7. Habibnejad-Korayem M, Mahmudi R, Ghasemi H M, and Poole W J, Wear 268 (2010) 405.

    Article  Google Scholar 

  8. Chen H and Alpas A T, Wear 246 (2000)106.

    Article  Google Scholar 

  9. El-Morsy A-W, Mater Sci Eng A 473 (2008) 330.

    Article  Google Scholar 

  10. Taltavull C, Torres B, Lopez A J, and Rams J, Wear 301 (2013) 615.

    Article  Google Scholar 

  11. Paddar P, Das A, and Sahoo K L, Mater Des 54 (2014) 820.

    Article  Google Scholar 

  12. Anbu selvan S, and Ramanthan S, Mater Des 31 (2010) 1930.

  13. Jungk J M, Michael J R, and Pasad S V, Acta Materiallia 56 (2008) 1956.

    Article  Google Scholar 

  14. Das S, Morale A T, and Alpas A T, Wear 268 (2010) 94.

    Article  Google Scholar 

  15. Somekawa H, Meada S, Hirayama T, Mitsuoka T, Inoue T, and Mukai T, Mater Sci Eng A 561 (2013) 371.

    Article  Google Scholar 

  16. Yao B, Han Z, and Lu K, Wear 294295 (2012) 438.

    Article  Google Scholar 

  17. Nguyen Q B, Sim Y H M, Gupta M, and Lim C Y H, Tribol Int (2014), doi:10.1016/triboint2014.02.024.

  18. An J, Li R G, Lu Y, Chen C M, Xu Y, Chen X, and Wang L M, Wear 265 (2008) 97.

    Article  Google Scholar 

  19. Wang S Q, Yang Z R, Zhao Y T, and Wei M X, Tribol Lett 38 (2010) 39.

    Article  Google Scholar 

  20. Moore M A, and Douthwaite R M, Metall Trans A 7 (1976) 1833.

    Article  Google Scholar 

  21. Tan J C, and Tan M J, Mater Sci Eng A 339 (2003) 124.

    Article  Google Scholar 

  22. Mwembela A, Konopleva E B, and McQueen H J, Scripta Materialia 37 (1997) 1789.

    Article  Google Scholar 

  23. Lim S C, and Ashby M F, Acta Metallurgica 35 (1987) 1.

    Article  Google Scholar 

  24. Wonsiewicz B C, and Backofen W A, Trans Metall Soc AIME 239 (1967) 1422.

    Google Scholar 

  25. Yoshinaga H, and Horiuh R, Mater Trans JIM 4 (1963) 134.

    Google Scholar 

Download references

Acknowledgments

The authors thank the Project 985-automotive engineering of Jilin University and National Foundation of Doctoral Station (Grant No.20110061110031).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to X. X. Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, C., Han, X., Su, T.F. et al. Roles of Friction-Induced Strain Hardening and Recrystallization in Dry Sliding Wear of AZ31 Magnesium Alloy. Trans Indian Inst Met 68, 89–98 (2015). https://doi.org/10.1007/s12666-014-0437-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-014-0437-0

Keywords

Navigation